Extension Complexity of Polytopes with Few Vertices or Facets

We study the extension complexity of polytopes with few vertices or facets. On the one hand, we provide a complete classification of $d$-polytopes with at most $d+4$ vertices according to their extension complexity: Out of the super-exponentially many $d$-polytopes with $d+4$ vertices, all have extension complexity $d+4$ except for some families of size $\theta(d^2)$. On the other hand, we show that generic realizations of simplicial/simple $d$-polytopes with $d+1+\alpha$ vertices/facets have extension complexity at least $2 \sqrt{d(d+\alpha)} -d + 1$, which shows that for all $d>(\frac{\alpha-1}{2})^2$ there are $d$-polytopes with $d+1+\alpha$ vertices or facets and extension complexity $d+1+\alpha$.

[1]  LeRoy B. Beasley,et al.  Real rank versus nonnegative rank , 2009 .

[2]  Julian Pfeifle,et al.  Polygons as Sections of Higher-Dimensional Polytopes , 2014, Electron. J. Comb..

[3]  A. Razborov Communication Complexity , 2011 .

[4]  Dilip Kumar,et al.  𝒫-transforms , 2011 .

[5]  Nicolas Gillis,et al.  Heuristics for exact nonnegative matrix factorization , 2014, J. Glob. Optim..

[6]  Yaroslav Shitov Nonnegative rank depends on the field II , 2016 .

[7]  M. Coste AN INTRODUCTION TO SEMIALGEBRAIC GEOMETRY , 2002 .

[8]  N. Mnev The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .

[9]  Jürgen Richter-Gebert Realization Spaces of Polytopes , 1996 .

[10]  Arnau Padrol,et al.  Extension Complexity and Realization Spaces of Hypersimplices , 2016, Discret. Comput. Geom..

[11]  Mihalis Yannakakis,et al.  Expressing combinatorial optimization problems by linear programs , 1991, STOC '88.

[12]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[13]  Bernd Sturmfels,et al.  Some Applications of Affine Gale Diagrams to Polytopes with few Vertices , 1988, SIAM J. Discret. Math..

[14]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[15]  Joel E. Cohen,et al.  Nonnegative ranks, decompositions, and factorizations of nonnegative matrices , 1993 .

[16]  G. Ziegler Lectures on Polytopes , 1994 .

[17]  Günter M. Ziegler,et al.  Projected products of polygons , 2004 .

[18]  Arnau Padrol Polytopes with few vertices and few facets , 2016, J. Comb. Theory, Ser. A.

[19]  Éric Fusy Counting d-Polytopes with d+3 Vertices , 2006, Electron. J. Comb..

[20]  Yaroslav Shitov Sublinear extensions of polygons , 2014 .

[21]  James Worrell,et al.  Nonnegative Matrix Factorization Requires Irrationality , 2017, SIAM J. Appl. Algebra Geom..

[22]  Hartmut Klauck,et al.  Communication Complexity, Linear Optimization, and lower bounds for the nonnegative rank of matrices (Dagstuhl Seminar 13082) , 2013, Dagstuhl Reports.

[23]  Arnau Padrol,et al.  Many Neighborly Polytopes and Oriented Matroids , 2012, Discret. Comput. Geom..

[24]  Gérard Cornuéjols,et al.  Extended formulations in combinatorial optimization , 2010, 4OR.

[25]  Günter M. Ziegler,et al.  Construction and Analysis of Projected Deformed Products , 2010, Discret. Comput. Geom..

[26]  P. McMullen Transforms, Diagrams and Representations , 1979 .

[27]  Günter M. Ziegler,et al.  Basic Properties of Convex Polytopes , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[28]  Yaroslav Shitov,et al.  A universality theorem for nonnegative matrix factorizations , 2016, 1606.09068.

[29]  Hans Raj Tiwary,et al.  Extended Formulations for Polygons , 2011, Discret. Comput. Geom..

[30]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[31]  Rekha R. Thomas,et al.  Limitations of convex programming: lower bounds on extended formulations and factorization ranks (Dagstuhl Seminar 15082) , 2015, Dagstuhl Reports.

[32]  V. Kaibel Extended Formulations in Combinatorial Optimization , 2011, 1104.1023.

[33]  Rekha R. Thomas,et al.  Lifts of Convex Sets and Cone Factorizations , 2011, Math. Oper. Res..

[34]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[35]  Yaroslav Shitov An upper bound for nonnegative rank , 2014, J. Comb. Theory, Ser. A.

[36]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[37]  Samuel Fiorini,et al.  Combinatorial bounds on nonnegative rank and extended formulations , 2011, Discret. Math..