Dynamics and control of integrated microchemical systems with application to micro-scale fuel processing

Microchemical systems are a new generation of miniature chemical systems that carry out chemical reactions and separations in precisely fabricated three dimensional microreactor configurations in the size range of a few microns to a few hundred microns. Typical microchemical systems combine fluid handling and reaction capabilities with electronic sensing and actuation, are fabricated using integrated circuit (IC) manufacturing techniques and use silicon and related IC industry materials, polymers, ceramics, glass or quartz as their material of construction. The use of such systems for in situ and on-demand chemical production is gaining increasing importance as the field of microreaction engineering transitions from a theoretical concept to a technology with significant industrial applications. In this paper, we present a review of our work on MEMS-based microfabrication, modeling and control of micro-reformers for hydrogen delivery systems in micro-fuel cells and put it in the context of a number of reported studies in the literature on this topic. The paper concludes by suggesting possible areas of future research.

[1]  D. Vlachos,et al.  Mesoscopic modeling of chemical reactivity , 2004 .

[2]  J. M. Noworolski,et al.  Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures , 1996 .

[3]  Mayuresh V. Kothare,et al.  Towards a palladium micro-membrane for the water gas shift reaction: microfabrication approach and hydrogen purification results , 2003 .

[4]  Dimitri Jeltsema,et al.  Proceedings Of The 2000 American Control Conference , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[5]  Jacob K. White,et al.  A computer-aided design system for microelectromechanical systems (MEMCAD) , 1992 .

[6]  Mayuresh V Kothare,et al.  Fuel processing microreactors for hydrogen production in micro fuel cell applications , 2004 .

[7]  Thomas G. Bifano,et al.  Development of a MEMS microvalve array for fluid flow control , 1998 .

[8]  Denis Dochain,et al.  Dynamical analysis of distributed parameter tubular reactors , 2000, Autom..

[9]  M. Kothare,et al.  Novel microfluidic interconnectors for high temperature and pressure applications , 2003 .

[10]  Leonidas G. Bleris,et al.  Low-order empirical modeling of distributed parameter systems using temporal and spatial eigenfunctions , 2005, Comput. Chem. Eng..

[11]  Christopher Hebling,et al.  Fuel Cells for Low Power Applications , 2002 .

[12]  R.T. M'Closkey,et al.  Modal parameter identification of a MEMS gyroscope , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[13]  Michael P. Harold,et al.  Micromachined reactors for catalytic partial oxidation reactions , 1997 .

[14]  Panagiotis D. Christofides,et al.  Control of nonlinear distributed process systems : Recent developments and challenges , 2001 .

[15]  Markos A. Katsoulakis,et al.  Mesoscopic modeling of transport and reaction in microporous crystalline membranes , 2003 .

[16]  H. Stone,et al.  Microfluidics: Basic issues, applications, and challenges , 2001 .

[17]  K.E. Petersen,et al.  Silicon as a mechanical material , 1982, Proceedings of the IEEE.

[18]  M. Kothare,et al.  A microreactor for hydrogen production in micro fuel cell applications , 2004, Journal of Microelectromechanical Systems.

[19]  M. A. Snydera,et al.  Mesoscopic modeling of transport and reaction in microporous crystalline membranes , 2003 .

[20]  Mayuresh V. Kothare,et al.  PATHWAYS FOR OPTIMIZATION-BASED DRUG DELIVERY SYSTEMS AND DEVICES , 2006 .

[21]  Liwei Lin,et al.  Micro-to-macro fluidic interconnectors with an integrated polymer sealant , 2000 .

[22]  R. S. Besser,et al.  Preferential oxidation (PrOx) in a thin-film catalytic microreactor: Advantages and limitations , 2005 .

[23]  A. C. Robinson A survey of optimal control of distributed-parameter systems , 1971 .

[24]  Mark G. Arnold,et al.  Towards a co-design implementation of a system for model predictive control , 2005 .

[25]  Mayuresh V. Kothare,et al.  A radial microfluidic fuel processor , 2005 .

[26]  Jing Fan,et al.  Statistical simulation of rarefied gas flows in micro-channels , 2003 .

[27]  Leonidas G. Bleris,et al.  Towards embedded model predictive control for System-on-a-Chip applications , 2006 .

[28]  J. C. Amphlett,et al.  Hydrogen production by the catalytic steam reforming of methanol part 1: The thermodynamics , 1981 .

[29]  A. Berg,et al.  Micro Total Analysis Systems , 1995 .

[30]  M. Gad-el-Hak,et al.  Micro Flows: Fundamentals and Simulation , 2002 .

[31]  H. Kahn,et al.  Thin-film shape-memory alloy actuated micropumps , 1998 .

[32]  M. Kothare,et al.  Palladium based Micro-Membrane for Water Gas Shift Reaction and Hydrogen Gas Separation , 2001 .

[33]  I. Mezić,et al.  Chaotic Mixer for Microchannels , 2002, Science.

[34]  Mayuresh V. Kothare,et al.  Modeling of Multicomponent Concentration Profiles in Membrane Microreactors , 2005 .

[35]  Raphael Idem,et al.  Production of hydrogen from methanol; 2: Experimental studies , 1994 .

[36]  Raphael Idem,et al.  Production of Hydrogen from Methanol. Part 1. Catalyst Characterization Studies , 1994 .

[37]  Mayuresh V. Kothare,et al.  Water Gas Shift Reaction in a glass microreactor , 2007 .

[38]  Klavs F. Jensen,et al.  Microfabricated multiphase packed-bed reactors : Characterization of mass transfer and reactions , 2001 .

[39]  Mayuresh V. Kothare,et al.  A microreactor for in-situ hydrogen production by catalytic methanol reforming , 2001 .

[40]  R. Service Shrinking Fuel Cells Promise Power in Your Pocket , 2002, Science.

[41]  Klavs F. Jensen,et al.  Microfabricated Differential Reactor for Heterogeneous Gas Phase Catalyst Testing , 2002 .

[42]  Leonidas G. Bleris,et al.  Reduced order distributed boundary control of thermal transients in microsystems , 2005, IEEE Transactions on Control Systems Technology.

[43]  Jack W. Judy,et al.  Microelectromechanical systems (MEMS): fabrication, design and applications , 2001 .

[44]  S. Cass Anatomy of malice [computer viruses] , 2001 .

[45]  L.G. Bleris,et al.  A co-processor FPGA platform for the implementation of real-time model predictive control , 2006, 2006 American Control Conference.

[46]  Yong Wang,et al.  Microchannel reactors for fuel processing applications. I. Water gas shift reactor , 1999 .

[47]  W. Smyrl,et al.  Miniature fuel cells fabricated on silicon substrates , 2002 .

[48]  Alexander Mitsos,et al.  Optimal design and steady-state operation of micro power generation employing fuel cells , 2005 .

[49]  Xu Diao,et al.  Navier-Stokes simulations of gas flow in micro devices , 2000 .

[50]  Dorian Liepmann,et al.  Design and Fabrication of a Silicon-Based MEMS Rotary Engine , 2001, Micro-Electro-Mechanical Systems (MEMS).

[51]  Yong Wang,et al.  Microchannel Chemical Reactors for Fuel Processing Applications. II. Compact Fuel Vaporization , 2000 .

[52]  Weileun Fang,et al.  Micromachined rubber O-ring micro-fluidic couplers , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[53]  Raphael Idem,et al.  Production of hydrogen from methanol; 1: Catalyst characterization studies , 1994 .

[54]  K. Albaugh,et al.  Mechanisms of anodic bonding of silicon to pyrex glass , 1988, IEEE Technical Digest on Solid-State Sensor and Actuator Workshop.

[55]  Dionisios G. Vlachos,et al.  Microkinetic Modeling for Water-Promoted CO Oxidation, Water−Gas Shift, and Preferential Oxidation of CO on Pt , 2004 .

[56]  Thomas Melin,et al.  Influence of operation parameters on the separation of mixtures by pervaporation and vapor permeation with inorganic membranes. Part 2: Purely organic systems , 2005 .

[57]  K. R. Williams,et al.  Novel interconnection technologies for integrated microfluidic systems , 1998 .

[58]  Leonidas G. Bleris,et al.  Embedded Model Predictive Control for System-on-a-Chip Applications , 2004 .

[59]  Peter Pfeifer,et al.  Microstructured Catalysts for Methanol-Steam Reforming , 2000 .

[60]  Aniruddha Puntambekar,et al.  Self-aligning microfluidic interconnects for glass- and plastic-based microfluidic systems , 2002 .

[61]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[62]  이강택 2005 AIChE Annual Meeting , 2006 .

[63]  Klavs F. Jensen,et al.  Microfabricated packed‐bed reactor for phosgene synthesis , 2001 .

[64]  K. Jensen Microreaction engineering * is small better? , 2001 .

[65]  Yong Wang,et al.  A Compact Steam Reforming Reactor for Use in an Automotive Fuel Processor , 2000 .

[66]  R. Horowitz,et al.  Adaptive control for z-axis MEMS gyroscopes , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[67]  Peter Enoksson,et al.  Micromachined flow-through filter-chamber for chemical reactions on beads , 2000 .

[68]  Panagiotis D. Christofides,et al.  Nonlinear and Robust Control of Pde Systems , 2001 .

[69]  S. Cass MEMS in space , 2001 .

[70]  Mayuresh V. Kothare,et al.  Microfluidic modeling and simulation of flow in membrane microreactors , 2005 .

[71]  J. R. Mallon,et al.  Silicon fusion bonding for pressure sensors , 1988, IEEE Technical Digest on Solid-State Sensor and Actuator Workshop.

[72]  L.G. Bleris,et al.  Real-time implementation of model predictive control , 2005, Proceedings of the 2005, American Control Conference, 2005..

[73]  S. Terry,et al.  A gas chromatographic air analyzer fabricated on a silicon wafer , 1979, IEEE Transactions on Electron Devices.

[74]  L.G. Bleris,et al.  Model predictive hydrodynamic regulation of microflows , 2005, Proceedings of the 2005, American Control Conference, 2005..

[75]  Richard I. Masel,et al.  Development of a microreactor for the production of hydrogen from ammonia , 2004 .