Standard Model EFT and Extended Scalar Sectors

One of the simplest extensions of the Standard Model is the inclusion of an additional scalar multiplet, and we consider scalars in the $SU(2)_L$ singlet, triplet, and quartet representations. We examine models with heavy neutral scalars, $m_H\sim 1-2$ TeV, and the matching of the UV complete theories to the low energy effective field theory. We demonstrate the agreement of the kinematic distributions obtained in the singlet models for the gluon fusion of a Higgs pair with the predictions of the effective field theory. The restrictions on the extended scalar sectors due to unitarity and precision electroweak measurements are summarized and lead to highly restricted regions of viable parameter space for the triplet and quartet models.

[1]  A. Wulzer,et al.  Anomalous couplings in double Higgs production , 2012, 1205.5444.

[2]  S. Dawson,et al.  NLO corrections to double Higgs boson production in the Higgs singlet model , 2015, 1508.05397.

[3]  A. Accardi,et al.  Global parton distributions with nuclear and finite- Q 2 corrections , 2012, 1212.1702.

[4]  Mitchell Golden,et al.  Higgs boson triplets with Mw=Mzcos θw☆ , 1985 .

[5]  Christophe Grojean,et al.  On the validity of the effective field theory approach to SM precision tests , 2016, Journal of High Energy Physics.

[6]  Veronica Sanz,et al.  On new physics searches with multidimensional differential shapes , 2017, 1702.05106.

[7]  M. Gorbahn,et al.  Benchmarks for Higgs effective theory: extended Higgs sectors , 2015, 1502.07352.

[8]  D. Rathlev,et al.  Differential Higgs boson pair production at next-to-next-to-leading order in QCD , 2016, 1606.09519.

[9]  J. Romão,et al.  Higgs EFT for 2HDM and beyond , 2016, The European physical journal. C, Particles and fields.

[10]  M. Veltman,et al.  Neutral currents and the Higgs mechanism , 1975 .

[11]  Ernest Ma,et al.  Pattern of Symmetry Breaking with Two Higgs Doublets , 1978 .

[12]  H. Thacker,et al.  Weak interactions at very high energies: The role of the Higgs-boson mass , 1991 .

[13]  M. Trott,et al.  On the non-minimal character of the SMEFT , 2016, 1612.02040.

[14]  B. Grinstein,et al.  Higgs-Higgs bound state due to new physics at a TeV , 2007, 0704.1505.

[15]  O. Catà,et al.  Corrigendum to: “Complete electroweak chiral Lagrangian with a light Higgs at NLO” [Nucl. Phys. B 880 (2014) 552–573] , 2016 .

[16]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology , 2013, Journal of High Energy Physics.

[17]  U. Cambridge,et al.  Mass bounds in a model with a triplet Higgs , 2003, hep-ph/0302256.

[18]  A. Randle-conde,et al.  Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV , 2016 .

[19]  H. Logan,et al.  All the generalized Georgi-Machacek models , 2015, 1502.01275.

[20]  H. Georgi,et al.  Doubly charged Higgs bosons , 1985 .

[21]  B. Grinstein,et al.  Erratum: carving out parameter space in type-II two Higgs doublets model , 2013 .

[22]  M. Chala,et al.  Observable effects of general new scalar particles , 2014, 1412.8480.

[23]  Christophe Grojean,et al.  Effective Lagrangian for a light Higgs-like scalar , 2013, 1303.3876.

[24]  B. Grinstein,et al.  Carving out parameter space in type-II two Higgs doublets model , 2013, Journal of High Energy Physics.

[25]  R. Rattazzi,et al.  Theoretical constraints on the Higgs effective couplings , 2009, 0907.5413.

[26]  M. Kerner,et al.  NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers , 2017, 1703.09252.

[27]  C. Murphy,et al.  Next-to-leading order unitarity fits in Two-Higgs-Doublet models with soft Z 2 breaking , 2018 .

[28]  W. Skiba,et al.  Electroweak Corrections from Triplet Scalars , 2012, 1201.4383.

[29]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[30]  P. Zerwas,et al.  Erratum to “Pair production of neutral Higgs particles in gluon-gluon collisions” [Nucl. Phys. B 479 (1996) 46]☆ , 1998 .

[31]  Andreas Papaefstathiou,et al.  Higgs boson pair production in the D = 6 extension of the SM , 2014, 1410.3471.

[32]  W. Kilian,et al.  The Low-energy structure of little Higgs models , 2003, hep-ph/0311095.

[33]  Kentarou Mawatari,et al.  Rosetta: an operator basis translator for standard model effective field theory , 2015, The European Physical Journal C.

[34]  T. Stefaniak,et al.  The Higgs singlet extension at LHC Run 2 , 2016, 1606.07793.

[35]  T. Plehn,et al.  PAIR PRODUCTION OF NEUTRAL HIGGS PARTICLES IN GLUON-GLUON COLLISIONS , 1996 .

[36]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence , 2013, Journal of High Energy Physics.

[37]  Michael Trott,et al.  Renormalization group evolution of the standard model dimension six operators. I: formalism and λ dependence , 2013, Journal of High Energy Physics.

[38]  S. Borowka,et al.  Full top quark mass dependence in Higgs boson pair production at NLO , 2016 .

[39]  D. Florian,et al.  Higgs boson pair production at NNLO in QCD including dimension 6 operators , 2017, 1704.05700.

[40]  S. Dawson,et al.  Exploring resonant di-Higgs boson production in the Higgs singlet model , 2014, 1410.5488.

[41]  R. Contino,et al.  Effective field theory analysis of double Higgs boson production via gluon fusion , 2015 .

[42]  Howard E. Haber,et al.  The CP-conserving two-Higgs-doublet model: the approach to the decoupling limit , 2003 .

[43]  G. M. Pruna,et al.  Higgs singlet extension parameter space in the light of the LHC discovery , 2013, 1303.1150.

[44]  C. Englert,et al.  Precision Measurements of Higgs Couplings: Implications for New Physics Scales , 2014, 1403.7191.

[45]  R. Chivukula,et al.  Low-energy effective theory, unitarity, and nondecoupling behavior in a model with heavy Higgs-triplet fields , 2007, 0712.0546.

[46]  A. Dedes,et al.  Feynman rules for the Standard Model Effective Field Theory in Rξ-gauges , 2017, 1704.03888.

[47]  Scalar Representations in the Light of Electroweak Phase Transition and Cold Dark Matter Phenomenology , 2013, 1310.8152.

[48]  Christophe Grojean,et al.  A global view on the Higgs self-coupling , 2017, 1704.01953.

[49]  D. Majumder,et al.  Probing vector-like quark models with Higgs-boson pair production , 2017, 1703.10614.

[50]  Takeuchi,et al.  Estimation of oblique electroweak corrections. , 1992, Physical review. D, Particles and fields.

[51]  A. Celis,et al.  Standard model extended by a heavy singlet: Linear vs. nonlinear EFT , 2016, 1608.03564.

[52]  Ian Low,et al.  Impersonating the Standard Model Higgs boson: alignment without decoupling , 2013, 1310.2248.

[53]  CMS Collaboration Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV , 2015 .

[54]  C. Burgess,et al.  A Higgs or Not a Higgs? What to Do if You Discover a New Scalar Particle , 1999, hep-ph/9912459.

[55]  J. No,et al.  Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production , 2013, 1310.6035.

[56]  S. Dawson,et al.  Higgs triplets, decoupling, and precision measurements , 2008, 0809.4185.

[57]  Ferruccio Feruglio The Chiral Approach to the Electroweak Interactions , 1992 .

[58]  C. Englert,et al.  Pinning down Higgs triplets at the LHC , 2013, 1306.6228.

[59]  Matthew J. Dolan,et al.  Higgs self-coupling measurements at the LHC , 2012, 1206.5001.

[60]  D. Wyler,et al.  Effective lagrangian analysis of new interactions and flavour conservation , 1986 .

[61]  H. Murayama,et al.  How to use the Standard Model effective field theory , 2014, 1412.1837.

[62]  David J. Miller,et al.  Handbook of LHC Higgs Cross Sections: 3. Higgs Properties , 2013, 1307.1347.

[63]  O. Eberhardt,et al.  Next-to-leading order unitarity fits in Two-Higgs-Doublet models with soft ℤ2 breaking , 2016, 1609.01290.

[64]  Z. Kunszt,et al.  One-loop effective lagrangians after matching , 2016, 1602.00126.

[65]  Michael Spannowsky,et al.  Maxi-sizing the trilinear Higgs self-coupling: how large could it be? , 2017, The European Physical Journal C.

[66]  C. Chiang,et al.  Standard Model Effective Field Theory: integrating out a generic scalar , 2015, 1505.06334.

[67]  Matthew J. Dolan,et al.  New physics in LHC Higgs boson pair production , 2012, 1210.8166.

[68]  Claudius Krause,et al.  Complete electroweak chiral Lagrangian with a light Higgs at NLO , 2013, 1307.5017.

[69]  Q. Cao,et al.  Double Higgs production at the 14 TeV LHC and a 100 TeV $pp$ collider , 2016, 1611.09336.

[70]  Yanou Cui,et al.  Narrow trans-TeV Higgs bosons and H→hh decays: two LHC search paths for a hidden sector Higgs boson , 2007 .

[71]  Andrea Benaglia,et al.  Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV , 2015 .

[72]  Model independent search for Higgs boson pair production in the bb τ + τ − final state The CMS Collaboration , 2016 .

[73]  J. Hisano,et al.  The Higgs boson mixes with an SU(2) septet representation , 2013, 1301.6455.

[74]  Francesco Riva,et al.  Strong electroweak phase transitions in the Standard Model with a singlet , 2011, 1107.5441.

[75]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[76]  Sahal Yacoob,et al.  Searches for Higgs boson pair production in the hh →bbττ, γγWW∗, γγbb, bbbb channels with the ATLAS detector , 2015 .

[77]  C. Grojean,et al.  The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.

[78]  J. Bij,et al.  HIGGS BOSON PAIR PRODUCTION VIA GLUON FUSION , 1988 .