Photochemistry of Saturn's Atmosphere: I. Hydrocarbon Chemistry and Comparisons with ISO Observations

To investigate the details of hydrocarbon photochemistry on Saturn, we have developed a one-dimensional diurnally averaged model that couples hydrocarbon and oxygen photochemistry, molecular and eddy diffusion, radiative transfer, and condensation. The model results are compared with observations from the Infrared Space Observatory (ISO) to place tighter constraints on molecular abundances, to better define Saturn's eddy diffusion coefficient profile, and to identify important chemical schemes that control the abundances of the observable hydrocarbons in Saturn's upper atmosphere. From the ISO observations, we determine that the column densities of CH3, CH3C2H, and C4H2 above 10 mbar are 4+2−1.5×1013 cm−2, (1.1±0.3)×1015 cm−2, and (1.2±0.3)×1014 cm−2, respectively. The observed ISO emission features also indicate C2H2 mixing ratios of 1.2+0.9−0.6×10−6 at 0.3 mbar and (2.7±0.8)×10−7 at 1.4 mbar, and a C2H6 mixing ratio of (9±2.5)×10−6 at 0.5 mbar. Upper limits are provided for C2H4, CH2CCH2, C3H8, and C6H2. The sensitivity of the model results to variations in the eddy diffusion coefficient profile, the solar flux, the CH4 photolysis branching ratios, the atomic hydrogen influx, and key reaction rates are discussed in detail. We find that C4H2 and CH3C2H are particularly good tracers of important chemical processes and physical conditions in Saturn's upper atmosphere, and C2H6 is a good tracer of the eddy diffusion coefficient in Saturn's lower stratosphere. The eddy diffusion coefficient must be smaller than ∼3×104 cm2 s−1 at pressures greater than 1 mbar in order to reproduce the C2H6 abundance inferred from ISO observations. The eddy diffusion coefficients in the upper stratosphere could be constrained by observations of CH3 radicals if the low-temperature chemistry of CH3 were better understood. We also discuss the implications of our modeling for aerosol formation in Saturn's lower stratosphere—diacetylene, butane, and water condense between ∼1 and 300 mbar in our model and will dominate stratospheric haze formation at nonauroral latitudes. Our photochemical models will be useful for planning observational sequences and for analyzing data from the upcoming Cassini mission.

[1]  S. Atreya,et al.  Methane photochemistry and haze production on Neptune , 1988 .

[2]  R. Huie,et al.  ULTRAVIOLET ABSORPTION AND CROSS SECTIONS OF PROPARGYL (C3H3) RADICALS IN THE 230-300 NM REGION , 1997 .

[3]  S. Atreya,et al.  Stratospheric aerosols from CH4 photochemistry on Neptune , 1989 .

[4]  R. Vervack,et al.  Structure of Jupiter's upper atmosphere: Predictions for Galileo , 1996 .

[5]  A. Colussi,et al.  Is the homogeneous thermal dimerization of acetylene a free-radical chain reaction? Kinetic and thermochemical analysis , 1988 .

[6]  Sushil K. Atreya,et al.  Book-Review - Atmospheres and Ionospheres of the Outer Planets and Their Satellites , 1986 .

[7]  M. Kessler,et al.  The Infrared Space Observatory (ISO) mission. , 1996 .

[8]  Dennis C. Reuter,et al.  13C-Ethane in the Atmospheres of Jupiter and Saturn , 1996 .

[9]  Jean-Paul Champion,et al.  The GEISA system in 1996: Towards an operational tool for the second generation vertical sounders radiance simulation , 1998 .

[10]  L. Trafton Long-term changes in Saturn's troposphere , 1985 .

[11]  C P McKay,et al.  Photochemical modeling of Titan's atmosphere , 1995, Icarus.

[12]  S. Leone,et al.  Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K , 1996 .

[13]  J. Waite,et al.  Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn , 1984 .

[14]  J. Roscoe,et al.  A kinetic analysis of the photolysis of mixtures of acetone and propylene , 1994 .

[15]  C. Porco,et al.  A new constraint on Saturn's zonal gravity harmonics from Voyager observations of an eccentric ringlet , 1988 .

[16]  J. W. Fleming,et al.  Temterature dependence of the reactions of CH radicals with unsaturated hydrocarbons , 1982 .

[17]  J. W. C. Johns,et al.  The bending energy levels of C4H2 , 1992 .

[18]  U. Alkemade,et al.  Reactions of Ethynyl Radicals with Alkynes in the System Sodium Vapour/Ethynylbromide/Alkyne , 1988 .

[19]  Kinetics of the reaction between H atoms and allyl radicals , 1992 .

[20]  S. Leone,et al.  LOW-TEMPERATURE RATE COEFFICIENTS OF C2H WITH CH4 AND CD4 FROM 154 TO 359 K , 1996 .

[21]  Philip D. Nicholson,et al.  Saturn's Central Flash from the 3 July 1989 Occultation of 28 Sgr at McDonald and Palomar Observatories , 1993 .

[22]  D. Husain,et al.  Kinetic investigation of ground state carbon atoms, C(23PJ) , 1975 .

[23]  J. Zhang,et al.  Photodissociation of ethylene at 193 nm , 1992 .

[24]  R. Killen Longitudinal variations in the Saturnian atmosphere. I. Equatorial region , 1988 .

[25]  P. Ausloos,et al.  Photolysis of methane: Quantum yield of C(1D) and CH , 1972 .

[26]  S. Synnott,et al.  Gravity field of the Saturnian system from Pioneer and Voyager tracking data , 1985 .

[27]  P. Romani Recent Rate Constant and Product Measurements of the Reactions C2H3+ H2and C2H3+ H—Importance for Photochemical Modeling of Hydrocarbons on Jupiter , 1996 .

[28]  Y. Yung,et al.  Computations and estimates of rate coefficients for hydrocarbon reactions of interest to the atmospheres of the outer solar system , 1983 .

[29]  K. Yoshino,et al.  High‐resolution, VUV (147–201 nm) photoabsorption cross sections for C2H2 at 195 and 295 K , 1991 .

[30]  M. Molina,et al.  Chemical kinetics and photochemical data for use in stratospheric modeling , 1985 .

[31]  T. Slanger,et al.  Photodissociative channels at 1216 Å for H2O, NH3, and CH4 , 1982 .

[32]  G. F. Lindal,et al.  The atmosphere of Neptune : an analysis of radio occultation data acquired with Voyager 2 , 1992 .

[33]  A. Fahr,et al.  Temperature dependent ultraviolet absorption cross sections of 1,3-butadiene and butadiyne , 1994 .

[34]  D. Strobel Aeronomy of Saturn and Titan , 1978 .

[35]  H. Johnston,et al.  TEMPERATURE-DEPENDENT ULTRAVIOLET ABSORPTION SPECTRUM FOR N2O5 , 1982 .

[36]  M. Torr,et al.  Ionization frequencies for solar cycle 21: Revised , 1985 .

[37]  W. A. Payne,et al.  Rate of the reaction of atomic hydrogen with propyne over an extended pressure and temperature range , 1976 .

[38]  J. Allen,et al.  Thin-film infrared spectroscopic method for low-temperature vapor pressure measurements , 1990 .

[39]  M. Allen,et al.  Metastable Diacetylene Reactions as Routes to Large Hydrocarbons in Titan's Atmosphere , 1996 .

[40]  B. Ivanov,et al.  A measurement of formation rates and lifetimes of intermediate complexes in reversible chemical reactions involving hydrogen atoms , 1978 .

[41]  G. Gladstone UV resonance line dayglow emissions on Earth and Jupiter , 1988 .

[42]  W. M. Pitts,et al.  Temperature dependence of the C2(X1Σg+) reaction with H2 and CH4 and C2(X1Σg+ and a 3Πu equilibrated states) with O2 , 1982 .

[43]  H. Wagner,et al.  Kinetics of the reactions of CH2 ( 3B1-radicals with C2H2 and C4H2 in the temperature range 296 K≤T≤700 K , 1988 .

[44]  R. D. Kern,et al.  Shock-tube study of allene pyrolysis , 1987 .

[45]  Emmanuel Lellouch,et al.  Erratum: ``Vertical distribution of Titan's atmospheric neutral constituents'' , 1996 .

[46]  R. Curl,et al.  Rate Constant Measurement of the Recombination Reaction C3H3 + C3H3 , 1994 .

[47]  M. Pilling,et al.  Experimental and Theoretical Study of the Recombination Reaction CH3 + CH3 > C2H6. , 1991 .

[48]  J. Warnatz,et al.  Reaktionen des Butadiins I. Die Reaktion mit Wasserstoffatomen , 1975 .

[49]  J. Clarke,et al.  H I Lyman alpha emission from Saturn (1980‐1990) , 1992 .

[50]  R. Carlson,et al.  Ultraviolet Photometer Observations of the Saturnian System , 1980, Science.

[51]  J. Troe,et al.  The Dissociation-Recombination System CH4 + M⇌CH3 + H + M: Reevaluated Experiments from 300 to 3000 K , 1990 .

[52]  Makiko Sato,et al.  Photometry and polarimetry of Saturn at 2640 and 7500 Å , 1983 .

[53]  E. Pantos,et al.  The extinction coefficient of benzene vapor in the region 4.6 to 36 eV , 1978 .

[54]  Keith S. Noll,et al.  The spectrum of Saturn from 1990 to 2230 cm−1 ; Abundances of AsH3, CH3D, CO, GeH4, NH3, and PH3 , 1991 .

[55]  M. Pilling,et al.  Flash Photolysis of Ketene and Diazomethane: The Production and Reaction Kinetics of Triplet and Singlet Methylene , 1970 .

[56]  J. Malkin Photophysical and Photochemical Properties of Aromatic Compounds , 1992 .

[57]  L. Horn,et al.  Infrared observations of the saturnian system from voyager 1. , 1981, Science.

[58]  E. Ratajczak,et al.  Kinetics of the reactions H + C2H4 → C2H5, H + C2H5 → 2CH3 and CH3 + C2H5 → products studied by pulse radiolysis combined with infrared diode laser spectroscopy , 1993 .

[59]  S. Satyapal,et al.  Photodissociation of acetylene at 193.3 nm , 1991 .

[60]  M. Berman,et al.  Kinetics and mechanisms of the reactions of CH with CH4, C2H6 and n-C4H10 , 1983 .

[61]  M. Ashfold,et al.  Primary product channels in the photodissociation of methane at 121.6 nm , 1993 .

[62]  Paul N. Romani,et al.  Methane photochemistry on Neptune : ethane and acetylene mixing ratios and haze production , 1993 .

[63]  H. Okabe,et al.  Photodissociation of Methylacetylene at 193 nm , 1992 .

[64]  Edward A. Mason,et al.  Gaseous Diffusion Coefficients , 1972 .

[65]  A. Laufer,et al.  Deuterium Isotope Effect in Vinyl Radical Combination/Disproportionation Reactions , 1995 .

[66]  D. Andrieux,et al.  Mid‐UV acetylene cross‐sections revisited: Sample contamination risk in source data , 1995 .

[67]  Robert Shaw,et al.  A compilation of kinetic parameters for the thermal degradation of n‐alkane molecules , 1980 .

[68]  H. Tanneberger Einige Bemerkungen über die Dampfdruck‐Kurve des Diacetylens (Butadiins). , 1933 .

[69]  S. Atreya,et al.  Voyager 2 ultraviolet spectrometer solar occultations at neptune: photochemical modeling of the 125–;165 nm lightcurves , 1998 .

[70]  B. Bézard,et al.  A seasonal climate model of the atmospheres of the giant planets at the voyager encounter time: I. Saturn's stratosphere , 1985 .

[71]  Michael J. Pilling,et al.  Summary table of evaluated kinetic data for combustion modeling: Supplement 1 , 1994 .

[72]  M. Pilling,et al.  Experimental and RRKM Modeling Study of the CH3 + H and CH3 + D Reactions. , 1989 .

[73]  W. A. Payne,et al.  Absolute rate-constant and product branching ratios for the reaction between H and C2H3 at T = 213 K and 298 K. , 1995 .

[74]  M. Tomasko,et al.  Analysis of the Near-IR Spectrum of Saturn: A Comprehensive Radiative Transfer Model of Its Middle and Upper Troposphere , 1997 .

[75]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[76]  J. McConnell,et al.  The dependence of electroglow on the solar flux , 1987 .

[77]  M. Berman,et al.  Kinetics and mechanisms of the reactions of CH and CD with H2 and D2 , 1984 .

[78]  E. Lellouch,et al.  External supply of oxygen to the atmospheres of the giant planets , 1997, Nature.

[79]  M. Tomasko,et al.  Saturn's Upper Atmospheric Hazes Observed by the Hubble Space Telescope , 1993 .

[80]  J. McConnell,et al.  Voyager U.V. spectrometer observations of He 584 A dayglow at Jupiter , 1980 .

[81]  J. McConnell,et al.  He 584 Å Dayglow at Saturn: A Reassessment , 1998 .

[82]  J. W. C. Johns,et al.  The bending energy levels of C2H2 , 1991 .

[83]  T. Encrenaz,et al.  Detection of methyl radicals (CH_3) on Saturn , 1998 .

[84]  M. Allen,et al.  The relative abundance of ethane to acetylene in the Jovian stratosphere. , 1992, Icarus.

[85]  A. Laufer,et al.  Photolysis of Methane at 1236‐Å: Quantum Yield of Hydrogen Formation , 1968 .

[86]  J. Troe Theory of thermal unimolecular reactions at low pressures. I. Solutions of the master equation , 1977 .

[87]  Haider Nazre,et al.  The collisional behaviour of ground state atomic carbon, C(2p2(3Pj) with ethylene and acetylene investigated by time-resolved atomic resonance absorption spectroscopy in the vacuum ultraviolet , 1993 .

[88]  L. Stief,et al.  The reaction H + C4H2: Absolute rate constant measurement and implication for atmospheric modeling of Titan , 1986 .

[89]  S. Atreya,et al.  Voyager ultraviolet stellar occultation measurements of the composition and thermal profiles of the Saturnian upper atmosphere , 1982 .

[90]  Matthew Joseph Griffin,et al.  First results of ISO-SWS observations of Saturn: Detection of CO2, CH3C2H, C4H2 and tropospheric H2O , 1997 .

[91]  U. Alkemade,et al.  Formation of C6H6 Isomers by Recombination of Propynyl in the System Sodium Vapour/Propynylhalide , 1989 .

[92]  R. Carlson,et al.  The extreme ultraviolet dayglow of Jupiter , 1971 .

[93]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[94]  Michael J. Pilling,et al.  Study of the recombination reaction methyl + methyl .fwdarw. ethane. 1. Experiment , 1988 .

[95]  R. Lavi,et al.  Translational energy distribution from ethyne + h.nu.(193.3 nm) .fwdarw. ethynyl radical + hydrogen atom , 1991 .

[96]  Julianne Ives Moses I. Phase Transformations and the Spectral Reflectance of Solid Sulfur: Possible Metastable Sulfur Allotropes on Io's Surface. II. Photochemistry and Aerosol Formation in Neptune's Atmosphere. , 1991 .

[97]  L. Horn,et al.  Cassini/Huygens: A Mission to the Saturnian Systems , 1996 .

[98]  K. Bayes,et al.  Rate constants for some radical-radical cross-reactions and the geometric mean rule , 1990 .

[99]  H. Wagner,et al.  Reaktionen von Wasserstoffatomen mit ungesättigten C3-Kohlenwasserstoffen. I. Die Reaktion von H-Atomen mit Propylen , 1972 .

[100]  J. Pollack,et al.  An Analysis of Neptune ' s Stratospheric Haze Using High-Phase-Angle Voyager Images , 2022 .

[101]  Wing Tsang,et al.  Critical Review of rate constants for reactions of hydrated electronsChemical Kinetic Data Base for Combustion Chemistry. Part 3: Propane , 1988 .

[102]  F. Raulin,et al.  Modeling of methane photolysis in the reducing atmospheres of the outer solar system , 1999 .

[103]  D. Strobel,et al.  Photochemistry of the atmosphere of Uranus , 1987 .

[104]  M. Allen,et al.  Hydrocarbon photochemistry in the upper atmosphere of Jupiter. , 1991, Icarus.

[105]  D. Strobel,et al.  Eddy diffusion at Saturn's homopause , 1982 .

[106]  J. Wolfrum,et al.  Die Geschwindigkeit der Reaktion von atomarem Wasserstoff mit Azetylen. (I) , 1968, Berichte der Bunsengesellschaft für physikalische Chemie.

[107]  H. Spinrad,et al.  On the Spectrum of Saturn , 1963 .

[108]  W. Braun,et al.  Reaction rate determinations of vinyl radical reactions with vinyl, methyl, and hydrogen atoms , 1991 .

[109]  M. Khlifi,et al.  Infrared spectra of triacetylene in the 4000-220 cm−1 region: Absolute band intensity and implications for the atmosphere of Titan , 1994 .

[110]  Paul E. Johnson,et al.  Measurement of stratospheric aerosol on Saturn using an eclipse of Titan , 1981 .

[111]  Martin G. Tomasko,et al.  Polarimetry and photometry of Saturn from Pioneer 11: Observations and constraints on the distribution and properties of cloud and aerosol particles , 1984 .

[112]  D. Strobel,et al.  The Photochemistry of Methane in the Jovian Atmosphere , 1969 .

[113]  W. T. Ziegler,et al.  The Vapor pressures of some hydrocarbons in the liquid and solid state at low temperatures , 1959 .

[114]  H. Petek,et al.  Collisional removal of CH2(1A1): Absolute rate constants for atomic and molecular collisional partners at 295 K , 1983 .

[115]  M. Tomasko,et al.  Saturn's upper troposphere 1986–1989 , 1992 .

[116]  M. Allen,et al.  Vertical eddy diffusion transport and photochemistry in the terrestrial mesosphere and lower thermosphere (50-120 KM) , 1981 .

[117]  M. Tomasko,et al.  Clouds, aerosols, and photochemistry in the Jovian atmosphere , 1986 .

[118]  D. Strobel Photochemistry of the Reducing Atmospheres of Jupiter, Saturn and Titan , 1983 .

[119]  P. Patterson,et al.  Direct rate constant measurements for atomic hydrogen + methane .fwdarw. methyl + hydrogen, 897-1729 K, using the flash photolysis-shock tube technique , 1991 .

[120]  D. Strobel Aeronomy of the major planets: Photochemistry of ammonia and hydrocarbons , 1975 .

[121]  S. E. Persson,et al.  Structure of Saturn's mesosphere from the 28 Sgr occultations , 1997 .

[122]  P. Wiesen,et al.  Temperature and pressure dependence of the reaction CH + H sub 2 , 1991 .

[123]  P. R. Westmoreland,et al.  Forming benzene in flames by chemically activated isomerization , 1989 .

[124]  M. Head‐Gordon,et al.  A Combined Experimental and Theoretical Study on the Formation of Interstellar C3H Isomers , 1996, Science.

[125]  P. Monks,et al.  Experimental Determination of the Rate Constant for the Reaction of C2H3 with H2 and Implications for the Partitioning of Hydrocarbons in Atmospheres of the Outer Planets , 1995 .

[126]  H. Wagner,et al.  The Contributions of Intersystem Crossing and Reaction in the Removal of CH2(ã1A1) by Hydrocarbons Studied with the LMR , 1985 .

[127]  S. Atreya Eddy mixing coefficient on Saturn , 1982 .

[128]  T. L. Ibbs,et al.  Thermal Diffusion in Gases , 1952 .

[129]  E. Ratajczak,et al.  Spectrokinetic studies of i-C3H7 and i-C3H7O2 radicals , 1986 .

[130]  J. McConnell,et al.  Saturn's upper atmosphere from the Voyager 2 Euv solar and stellar occultations , 1983 .

[131]  Michael J. Pilling,et al.  Evaluated Kinetic Data for Combustion Modelling , 1992 .

[132]  H. Okabe,et al.  Photochemistry of diacetylene , 1987 .

[133]  M. Pilling,et al.  The pressure and temperature dependence of the rate constant for methyl radical recombination over the temperature range 296–577 K , 1983 .

[134]  G. F. Lindal,et al.  The atmosphere of Saturn - an analysis of the Voyager radio occultation measurements , 1985 .

[135]  S. Atreya,et al.  Composition and thermal profiles of the Jovian upper atmosphere determined by the Voyager ultraviolet stellar occultation experiment , 1981 .

[136]  S. Benson,et al.  Rate parameters for the reactions of C/sub 2/H/sub 3/ and C/sub 4/H/sub 5/ with H/sub 2/ and C/sub 2/H/sub 2/ , 1988 .

[137]  C. Barnet,et al.  Phosphine Mixing Ratios and Eddy Mixing Coefficients in the Troposphere of Saturn , 1997 .

[138]  J. Wolfrum,et al.  Quantum yield for H atom formation in the methane dissociation after photoexcitation at the Lyman-α (121.6 nm) wavelength , 1997 .

[139]  Linda M. Herrell,et al.  Cassini/Huygens science instruments , 1996, Optics & Photonics.

[140]  M. Allen,et al.  Photochemistry of the atmosphere of Titan: comparison between model and observations. , 1984, The Astrophysical journal. Supplement series.

[141]  Albert-Jan Boonstra,et al.  Observing with the ISO Short-Wavelength Spectrometer , 1996 .

[142]  S. Leone,et al.  Laboratory studies of low-temperature reactions of C2H with C2H2 and implications for atmospheric models of Titan , 1993 .

[143]  K. Homann,et al.  Kinetics and Mechanism of Hydrocarbon Formation in the System C2H2/O/H at Temperatures up to 1300 K , 1983 .

[144]  J. Wormhoudt,et al.  A measurement of the strength of the ν2 band of CH3 , 1989 .

[145]  B. Bézard,et al.  A seasonal model of the Saturnian upper troposphere: Comparison with Voyager infrared measurements , 1983 .

[146]  M. Dobrijevic,et al.  Effect of chemical kinetics uncertainties on hydrocarbon production in the stratosphere of neptune , 1998 .

[147]  M. Allen,et al.  Photochemistry of Saturn's Atmosphere: II. Effects of an Influx of External Oxygen , 2000 .

[148]  T. Visser,et al.  The harmonic force field and absolute infrared intensities of diacetylene , 1984 .

[149]  M. Dobrijevic,et al.  New photochemical model of Saturn’s atmosphere , 2000 .

[150]  J. McConnell,et al.  Jupiter's He 584 Å Dayglow: New Results , 1995 .

[151]  B. Bézard,et al.  The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio , 1984 .

[152]  D. Strobel,et al.  Phosphine photochemistry in the atmosphere of Saturn , 1984 .

[153]  S. Atreya,et al.  Photochemistry and clouds of Jupiter, Saturn and Uranus , 1985 .

[154]  A. Heck,et al.  Photofragment imaging of methane , 1996 .

[155]  L. Stief,et al.  Hydrogen Formation in the Photolysis of Propyne at 1236 Å , 1972 .

[156]  Lawrence B. Harding,et al.  Theoretical studies of the reactions hydrogen atom + methylidyne .fwdarw. carbon + hydrogen and carbon + hydrogen .fwdarw. methylene using an ab initio global ground-state potential surface for methylene , 1993 .

[157]  H. White,et al.  High‐resolution, low‐temperature photoabsorption cross sections of C2H2, PH3, AsH3, and GeH4, with application to Saturn's atmosphere , 1991 .

[158]  J. Troe Theory of thermal unimolecular reactions at low pressures. II. Strong collision rate constants. Applications , 1977 .

[159]  E. Serabyn,et al.  The abundances of ethane and acetylene in the atmospheres of Jupiter and Saturn , 1986 .

[160]  M. Pilling,et al.  Experimental and RRKM modeling study of the methyl + hydrogen atom and deuterium atom reactions , 1989 .

[161]  D. Gautier,et al.  The helium abundance of Saturn from Voyager measurements , 1984 .

[162]  Peter A. R. Ade,et al.  Cassini infrared Fourier spectroscopic investigation , 1996, Optics & Photonics.

[163]  W. Boullart,et al.  Product distributions of the acetylene + atomic oxygen and HCCO (ketenyl) + atomic hydrogen reactions. Rate constant of methylene(.apprx.X3B1) + atomic hydrogen , 1992 .

[164]  S. Stein,et al.  Reactions of vinyl and phenyl radicals with ethyne, ethene and benzene , 1989 .

[165]  Michael J. Pilling,et al.  Temperature and pressure dependence of the rate constant for the addition of hydrogen atoms to ethylene , 1987 .