A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S
暂无分享,去创建一个
Kazuhiko Kunitomi | Hirofumi Ohashi | Hiroyuki Sato | Yukio Tachibana | Xing L. Yan | Yujiro Tazawa | Hiroyuki Sato | K. Kunitomi | H. Ohashi | Y. Tachibana | Y. Tazawa | Xing L. Yan
[1] Kazuhiko Kunitomi,et al. GTHTR300 design and development , 2003 .
[2] Kazuhiko Kunitomi,et al. Overview of HTTR design features , 2004 .
[3] Kazuhiko Kunitomi,et al. Safety evaluation on the depressurization accident in the gas turbine high temperature reactor (GTHTR300) , 2007 .
[4] A. Shenoy,et al. H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION , 2007 .
[5] Kazuhiko Kunitomi,et al. Study of a nuclear energy supplied steelmaking system for near-term application , 2012 .
[6] Kaoru Onuki,et al. A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine–sulfur process , 2004 .
[7] 一彦 國富,et al. 高温ガス炉ガスタービン発電システム(GTHTR300)の経済性評価 , 2006 .
[8] 一彦 國富,et al. 373. 高温ガス炉ガスタービン発電システム(GTHTR300)用高燃焼度燃料の成立性評価,(I) , 2002 .
[9] Hiroyuki Sato,et al. Assessment of load-following capability of VHTR cogeneration systems , 2012 .
[10] 國富 一彦,et al. 403. 高温ガス炉ガスタービン発電システム(GTHTR300)の磁気軸受支持ロータダイナミクス試験計画 , 2003 .
[11] 一彦 國富,et al. 電力水素併産型高温ガス炉(GTHTR300C)の安全設計方針 , 2006 .
[12] Kazuhiko Kunitomi,et al. Study of an incrementally loaded multistage flash desalination system for optimum use of sensible waste heat from nuclear power plant , 2013 .
[13] Xing Yan,et al. 398. 高温ガス炉ガスタービン発電システム(GTHTR300)の核熱流動設計 , 2003 .
[14] Kazuhiko Kunitomi,et al. Evaluation of high temperature gas reactor for demanding cogeneration load follow , 2012 .
[15] M. Gribaudo,et al. 2002 , 2001, Cell and Tissue Research.
[16] Shinichi Kosugiyama,et al. Economical Evaluation on Gas Turbine High Temperature Reactor 300 (GTHTR300) , 2004 .
[17] Kazuhiko Kunitomi,et al. Aerodynamic Design, Model Test, and CFD Analysis for a Multistage Axial Helium Compressor , 2008 .
[18] Min-Hwan Kim,et al. A STUDY OF A NUCLEAR HYDROGEN PRODUCTION DEMONSTRATION PLANT , 2007 .
[19] Nariaki Sakaba,et al. Thermochemical water-splitting cycle using iodine and sulfur , 2009 .
[20] S. Saito,et al. Design of high temperature Engineering Test Reactor (HTTR) , 1994 .
[21] Kazuhiko KUNITOMI,et al. Feasibility Study on High Burnup Fuel for Gas Turbine High Temperature Reactor ( GTHTR 300 ) , ( II ) , 2009 .
[22] G. H. Lohnert,et al. Technical design features and essentiaL safety-related properties of the HTR-module , 1990 .
[23] H. Barnert,et al. Status of the high-temperature reactor (HTR) — applications , 1990 .
[24] Kazuhiko Kunitomi,et al. JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION : GTHTR300C , 2007 .
[25] Kazuhiko Kunitomi,et al. GTHTR300 Design Variants for Production of Electricity, Hydrogen or Both , 2006 .
[26] Kaoru Onuki,et al. Thermochemical Iodine–Sulfur Process , 2011 .
[27] D. F. Da Cruz,et al. ACACIA: a small-scale power plant for near term deployment in new markets , 2004 .
[28] Kazuhiko Kunitomi,et al. High-Temperature Continuous Operation of the HTTR , 2011 .
[29] Shigeaki Nakagawa,et al. Achievement of Reactor-Outlet Coolant Temperature of 950°C in HTTR , 2004 .
[30] L. M. Lidsky,et al. A direct-cycle gas turbine power plant for near-term application: MGR-GT☆ , 1991 .
[31] Isao Minatsuki,et al. The role of Japan's industry in the HTTR design and its construction , 2004 .