POLY(ETHYLENE-CO-PROPYLENE)-G-POLYSTYRENE THROUGH MACROMER POLYMERIZATION - PREPARATION, MORPHOLOGY, AND STRUCTURE PROPERTIES RELATIONSHIPS

Graft copolymers with ethylene-propylene (EPR) backbone and polystyrene (PS) grafts, EPR-g-PS, were prepared by terpolymerization of a PS macromer with ethylene and propylene using a vanadium catalyst, with graft efficiency of up to 80% and PS content in the copolymer 5–45%. Such polymerization parameters as molecular weight and dosage of the macromer, catalyst concentration, and reaction temperature which affect the mobility and hence polymerizability of the macromer may have a marked influence on the polymerization and the structure of the products. The molecular architecture of the copolymers was characterized by osmometry, UV, NMR, and GPC methods. TEM and torsional pendulum studies revealed that EPR-g-PS possessed a phase separation morphology with PS domains evenly dispersed in the EPR matrix. The PS content and average number of grafts strongly influence the tensile properties of the copolymers. EPR-g-PS graft copolymers prepared by macromer copolymerization exhibit the mechanical properties of a typical thermoplastic elastomer having two or more branches of a certain length.