A comprehensive review on the progress of lead zirconate-based antiferroelectric materials

Abstract Lead zirconate (PbZrO 3 or PZ)-based antiferroelectric (AFE) materials, as a group of important electronic materials, have attracted increasing attention for their potential applications in high energy storage capacitors, micro-actuators, pyroelectric security sensors, cooling devices, and pulsed power generators and so on, because of their novel external electric field-induced phase switching behavior between AFE state and ferroelectric (FE) state. The performances of AFE materials are strongly dependent on the phase transformation process, which are mainly determined by the constitutions and the external field. For AFE thin/thick films, the electrical properties are also strongly dependent on their thickness, crystal orientation and the characteristics of electrode materials. Accordingly, various strategies have been employed to tailor the phase transformation behavior of AFE materials in order to improve their performances. Due to their relatively poor electrical strength (low breakdown fields), most PZ-based orthorhombic AFE ceramics are broken down before a critical switching field can be applied. As a consequence, the electric-field-induced transition between AFE and FE phase of only those AFE bulk ceramics, with compositions within tetragonal region near the AFE/FE morphotropic phase boundary (MPB), can be realized experimentally at room temperature. AFE materials with such compositions include (Pb,A)ZrO 3 (A = Ba, Sr), (Pb 1 − 3/2 x La x )(Zr 1 − y Ti y )O 3 (PLZT x /(1− y )/ y ), (Pb 0.97 La 0.02 )(Zr,Sn,Ti)O 3 (PLZST) and Pb 0.99 (Zr,Sn,Ti) 0.98 Nb 0.02 O 3 (PNZST). As compared to bulk ceramics, AFE thin and thick films always display better electric-field endurance ability. Consequently, room temperature electric-field-induced AFE–FE phase transition could be observed in the AFE thin/thick films with orthorhombic structures. Moreover, AFE films are more easily integrated with silicon technologies. Therefore, AFE thin/thick films have been a subject of numerous researches. This review serves to summarize the recent progress of PZ-based AFE materials, focusing on the external field (electric field, hydrostatic pressure and temperature) dependences of the AFE–FE phase transition, with a specific attention to the performances of AFE films for various potential applications, such as high energy storage, electric field induced strains, pyroelectric effect and electrocaloric effect.

[1]  Genshui Wang,et al.  Charge–Discharge Properties of an Antiferroelectric Ceramics Capacitor Under Different Electric Fields , 2010 .

[2]  Junkai Liu,et al.  Fatigue suppression of ferroelectric Pb1−xBax(Zr0.52Ti0.48)O3 thin films prepared by sol-gel method , 2007 .

[3]  J. Zhai,et al.  Growth and characterization of PNZST thin films , 2003 .

[4]  E. M. Alkoy,et al.  Microstructure and Crystallographic Orientation Dependence of Electrical Properties in Lead Zirconate Thin Films Prepared by Sol–Gel Process , 2005 .

[5]  D. Kwon,et al.  Dielectric properties and energy storage capability of antiferroelectric Pb_0.92La_0.08Zr_0.95Ti_0.05O_3 film-on-foil capacitors , 2009 .

[6]  L. Eric Cross,et al.  Ferroelectric and antiferroelectric films for microelectromechanical systems applications , 2000 .

[7]  Paula M. Vilarinho,et al.  High-quality PbZr0.52Ti0.48O3 films prepared by modified sol–gel route at low temperature , 2004 .

[8]  Y. Akiyama,et al.  Development of (Pb, Nb)(Zr, Sn, Ti)O3 Film Using a Sol-Gel Process and Resulting Antiferroelectric Properties , 1993 .

[9]  Zhuo Xu,et al.  Phase transition and dielectric properties of La-doped Pb(Zr,Sn,Ti)O3 antiferroelectric ceramics under hydrostatic pressure and temperature , 2002 .

[10]  J. Zhai,et al.  Crystallization kinetics and dielectric properties in sol-gel derived (Pb,La)(Zr,Sn, Ti)O3 ceramics , 2003 .

[11]  Ling Bing Kong,et al.  Preparation and characterization of antiferroelectric PLZT2/95/5 thin films via a sol–gel process , 2002 .

[12]  M. Lanagan,et al.  Thermodynamic theory of PbZrO3 , 1989 .

[13]  S. B. Krupanidhi,et al.  Study of La-modified antiferroelectric PbZrO3 thin films , 2003 .

[14]  H. Chan,et al.  Composition dependence of structural and optical properties of Ba(Zrx,Ti1-x)O3 thin films grown on MgO substrates by pulsed laser deposition , 2011 .

[15]  C. E. Land Bistable Optical Information Storage Using Antiferroelectric‐Phase Lead Lanthanum Zirconate Titanate Ceramics , 1988 .

[16]  K. Budd,et al.  SOL-GEL PROCESSING OF PbTiO//3, PbZrO//3, PZT, AND PLZT THIN FILMS. , 1985 .

[17]  N. D. Mathur,et al.  Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 , 2005, Science.

[18]  F. Aldinger,et al.  Uniaxial stress and temperature dependence of field induced strains in antiferroelectric lead zirconate titanate stannat ceramics , 1999 .

[19]  Unipolar and bipolar fatigue in antiferroelectric lead zirconate thin films and evidences for switching-induced charge injection inducing fatigue , 2010, 1001.2963.

[20]  G. Shirane,et al.  X-Ray and Neutron Diffraction Study of Antiferroelectric Lead Zirconate, PbZr O 3 , 1957 .

[21]  Qiang Li,et al.  Synthesis, sintering and characterization of PLZST perovskite prepared by a lactate precursor route , 2006 .

[22]  D. Payne,et al.  Thermal stability of field-forced and field-assisted antiferroelectric-ferroelectric phase transformations in Pb(Zr,Sn,Ti)O3 , 1992 .

[23]  O. Fesenko,et al.  Phase transitions and twinning in NaNbO3 crystals , 1987 .

[24]  Xihong Hao,et al.  Improved field‐induced strains and fatigue endurance of PLZT antiferroelectric thick films by orientation control , 2009 .

[25]  Takahiro Oikawa,et al.  Composition and orientation dependence of electrical properties of epitaxial Pb(ZrxTi1−x)O3 thin films grown using metalorganic chemical vapor deposition , 2004 .

[26]  G. Samara Pressure and Temperature Dependence of the Dielectric Properties and Phase Transitions of the Antiferroelectric Perovskites: PbZrO3and PbHfO3 , 1970 .

[27]  C. Kittel Theory of Antiferroelectric Crystals , 1951 .

[28]  J. Zhai,et al.  Fabrication of grain orientation BaTiO3 thick film by template grain growth method , 2011 .

[29]  L. Peng,et al.  Tunable pyroelectricity in LA-Modified PZST antiferroelectric ceramics , 1999 .

[30]  G. Burns,et al.  Crystal Growth and Observation of the Ferroelectric Phase of PbZrO3 , 1972 .

[31]  R. Blinc The soft mode concept and the history of ferroelectricity , 1987 .

[32]  K. Yoon,et al.  Molten salt synthesis of lead-based relaxors , 1998 .

[33]  Xihong Hao,et al.  A comprehensive investigation on the phase transformation behavior and electrical properties of (Pb1−xBax)ZrO3 (0≤x≤0.5) thin films , 2008 .

[34]  L. Kong,et al.  Preparation and characterization of PLZT ceramics using high-energy ball milling , 2001 .

[35]  S. B. Krupanidhi,et al.  Antiferroelectric lead zirconate thin films by pulsed laser ablation , 1999 .

[36]  Leslie E. Cross,et al.  Field‐Forced Antiferroelectric‐to‐Ferroelectric Switching in Modified Lead Zirconate Titanate Stannate Ceramics. , 1989 .

[37]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[38]  Xihong Hao,et al.  The electrical properties and phase transformation of PLZST 2/85/13/2 antiferroelectric thin films on different bottom electrode , 2007 .

[39]  Liang-ying Zhang,et al.  Preparation of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics using colloidal processing and the field induced strain properties , 2001 .

[40]  Hisao Suzuki,et al.  Low-temperature processing of Pb(Zr0·53Ti0·47)O3 Thin film from stable precursor sol , 1999 .

[41]  L. Chou,et al.  Characteristics of constrained ferroelectricity in PbZrO3∕BaZrO3 superlattice films , 2005 .

[42]  K. Yoon,et al.  Effect of antiferroelectric buffer on electric fatigue and leakage in ferroelectric Pb(Zr,Sn,Ti)NbO3 thin films , 2001 .

[43]  Jiefang Li,et al.  Field‐induced phase switching and electrically driven strains in sol‐gel derived antiferroelectric (Pb,Nb)(Zr,Sn,Ti)O3 thin layers , 1995 .

[44]  Hongbo Liu,et al.  A brief review on the model antiferroelectric PbZrO3 perovskite-like material , 2011 .

[45]  E. M. Alkoy,et al.  Effects of Ce, Cr and Er Doping and Annealing Conditions on the Microstructural Features and Electrical Properties of PbZrO3 Thin Films Prepared by Sol–Gel Process , 2005 .

[46]  A. F. Devonshire Theory of ferroelectrics , 1954 .

[47]  S. Yoshikawa,et al.  Effect of Compositional Variations in the Lead Lanthanum Zirconate Stannate Titanate System on Electrical Properties , 1996 .

[48]  F. Boey,et al.  Progress in Synthesis of Ferroelectric Ceramic Materials via High‐Energy Mechanochemical Technique , 2008 .

[49]  I. Nishiyama Antiferroelectric liquid crystals , 1994 .

[50]  N. G. Pai,et al.  Charge release of lanthanum-doped lead zirconate titanate stannate antiferroelectric thin films , 1998 .

[51]  Xin Li,et al.  Dielectric and ferroelectric properties of highly oriented (Pb,Nb)(Zr,Sn,Ti)O3 thin films grown by a sol-gel process , 2002 .

[52]  Xihong Hao,et al.  Effects of PbO Content on the Dielectric Properties and Energy Storage Performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 Antiferroelectric Thin Films , 2011 .

[53]  Qi Zhang,et al.  A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3 Thin Film at Room Temperature , 2013 .

[54]  P. Lysne,et al.  Electric energy generation by shock compression of ferroelectric ceramics: Normal−mode response of PZT 95/5 , 1975 .

[55]  L. E. Cross,et al.  Fabrication and Electrical Properties of Lead Zirconate Titanate Thick Films , 1996 .

[56]  Z. Ujma,et al.  The pyroelectric effect in single crystal and ceramic PbZrO3 , 1981 .

[57]  Dwight Viehland,et al.  Antiferroelectric‐ferroelectric switching and induced strains for sol‐gel derived lead zirconate thin layers , 1994 .

[58]  X. Dong,et al.  Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics , 2007 .

[59]  G. Bai,et al.  Preparation and structure of PbZrO3 epitaxial films by metalorganic chemical vapor deposition , 1993 .

[60]  S. B. Krupanidhi,et al.  Reversible and irreversible switching processes in pure and lanthanum modified lead zirconate thin films , 2002 .

[61]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[62]  J. Pannetier,et al.  Ferroelectric and antiferroelectric materials with pyrochlore structure , 1978 .

[63]  P. D. Thacher,et al.  Electrocaloric Effects in Some Ferroelectric and Antiferroelectric Pb(Zr, Ti)O3 Compounds , 1968 .

[64]  S. Yoshikawa,et al.  Electric field induced phase transition of antiferroelectric lead lanthanum zirconate titanate stannate ceramics , 1997 .

[65]  G. Kugel,et al.  The antiferroelectric-ferroelectric-paraelectric phase sequence in lead-lanthanum zirconate-titanate ceramics with 8% Ti content , 1994 .

[66]  J. Zhai,et al.  Enhanced dielectric properties of LSCO-buffered Ba(Sn0.05Ti0.95)O3 thin film prepared by sol–gel processing , 2007 .

[67]  Y. Akiyama,et al.  Field-Induced Antiferroelectric-to-Ferroelectric Phase Transition of Lead Niobium Zirconate Titanate Stannate Ceramics , 1997 .

[68]  D. Berlincourt Transducers Using Forced Transitions Between Ferroelectric and Antiferroelectric States , 1966, IEEE Transactions on Sonics and Ultrasonics.

[69]  J. Zhai,et al.  Preparation and Piezoelectric Properties of (h00)-Oriented BaTiO3 Ceramics by Tape Casting , 2010 .

[70]  Qiang Li,et al.  Effect of Ti4+:Sn4+ ratio on the phase transition and electric properties of PLZST antiferroelectric ceramics , 2007 .

[71]  D. Remiens,et al.  Preparation of highly (100)-oriented LaNiO3 nanocrystalline films by metalorganic chemical liquid deposition , 2005 .

[72]  P. Kelly,et al.  Magnetron sputtering: a review of recent developments and applications , 2000 .

[73]  P. Withers,et al.  Effects of superimposed electric field and porosity on the hydrostatic pressure-induced rhombohedral to orthorhombic martensitic phase transformation in PZT 95/5 ceramics , 2010 .

[74]  Haydn Chen,et al.  Direct current field adjustable ferroelectric behaviour in (Pb, Nb)(Zr, Sn, Ti)O3 antiferroelectric thin films , 2003 .

[75]  Y. Xi,et al.  Phase transition and dielectric properties of PbLa(Zr,Sn,Ti)O3 antiferroelectric ceramics under hydrostatic pressure , 2008 .

[76]  R. Katiyar,et al.  Dielectric and ferroelectric response of sol–gel derived Pb0.85La0.15TiO3 ferroelectric thin films on different bottom electrodes , 2002 .

[77]  B. Ma,et al.  Fabrication of antiferroelectric PLZT films on metal foils , 2009 .

[78]  Longjie Zhou,et al.  Electric fatigue in antiferroelectric Pb0.97La0.02(Zr0.55Sn0.33Ti0.12)O3 ceramics induced by bipolar cycling , 2006 .

[79]  Guangzu Zhang,et al.  Large electric-induced pyroelectric properties in (Pb0.87La0.02Ba0.1) (Zr0.7Sn0.24Ti0.06)O3 antiferroelectric ceramics with excess PbO , 2011 .

[80]  Qiming Zhang,et al.  Pyroelectric and Electrocaloric Materials , 2020, Progress in Advanced Dielectrics.

[81]  K. Nakajima,et al.  Improved ferroelectric properties of Pb(Zr0.52,Ti0.48)O3 thin film on single crystal diamond using CaF2 layer , 2010 .

[82]  L. Eric Cross,et al.  Dielectric properties and field-induced phase switching of lead zirconate titanate stannate antiferroelectric thick films on silicon substrates , 2000 .

[83]  A. Hewat Soft modes and the structure, spontaneous polarization and Curie constants of perovskite ferroelectrics: tetragonal potassium niobate , 1973 .

[84]  Jun-Ming Liu,et al.  Enhanced fatigue-endurance of ferroelectric Pb1−xSrx(Zr0.52Ti0.48)O3 thin films prepared by sol-gel method , 2006 .

[85]  N. Ichinose,et al.  Electrical and Electromechanical Properties of PbZrO3 Thin Films Prepared by Chemical Solution Deposition , 2001 .

[86]  M. Alexe,et al.  Coexistence of ferroelectricity and antiferroelectricity in epitaxial PbZrO3 films with different orientations , 2008 .

[87]  Matjaz Valant,et al.  Electrocaloric materials for future solid-state refrigeration technologies , 2012 .

[88]  D. Pandey,et al.  Dielectric studies of phase transitions in (Pb1−xBax)ZrO3 , 2000 .

[89]  J. Zhai,et al.  Phase transformation and electric field tunable pyroelectric behavior of Pb(Nb,Zr,Sn,Ti)O3 and (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thin films , 2006 .

[90]  Xihong Hao,et al.  Composition-dependent dielectric and energy-storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thick films , 2013 .

[91]  J. Zhai,et al.  Effect of the orientation on the ferroelectric–antiferroelectric behavior of sol–gel deposited (Pb,Nb)(Zr,Sn,Ti)O3 thin films , 2004 .

[92]  Xihong Hao,et al.  Metal-organic chemical liquid deposited (1 1 0)-preferred LaNiO3 buffer layer for Pb0.97La0.02(Zr0.85Sn0.13Ti0.02)O3 antiferroelectric films , 2008 .

[93]  S. B. Krupanidhi,et al.  Backward switching phenomenon from field forced ferroelectric to antiferroelectric phases in antiferroelectric PbZrO3 thin films , 2001 .

[94]  Y. Ju,et al.  Solid-State Refrigeration Based on the Electrocaloric Effect for Electronics Cooling , 2010 .

[95]  Hong Wang,et al.  Polarization switching and fatigue in Pb(Zr0.52Ti0.48)O3 films sandwiched by oxide electrodes with different carrier types , 2007 .

[96]  J. Zhai,et al.  Direct current field and temperature dependent behaviors of antiferroelectric to ferroelectric switching in highly (100)-oriented PbZrO3 thin films , 2003 .

[97]  J. Zhai,et al.  Role of oxygen pressure during pulsed laser deposition on the electrical and dielectric properties of antiferroelectric lanthanum-doped lead zirconate stannate titanate thin films , 2004 .

[98]  C. E. Land,et al.  Hot‐Pressed (Pb,La)(Zr,Ti)O3 Ferroelectric Ceramics for Electrooptic Applications , 1971 .

[99]  D. Hall,et al.  Influence of composition and pressure on the electric field-induced antiferroelectric to ferroelectric phase transformation in lanthanum modified lead zirconate titanate ceramics , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[100]  H. Krueger,et al.  Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition , 1964 .

[101]  J. Cesarano,et al.  Robocast Pb(Zr0.95Ti0.05)O3 Ceramic Monoliths and Composites , 2001 .

[102]  Y. Tong Effects of Compositional Variations on Antiferroelectric-Ferroelectric Phase Transition of PZST Ceramics , 2000 .

[103]  Jayanta Parui,et al.  Effect of La modification on antiferroelectricity and dielectric phase transition in sol-gel grown PbZrO3 thin films , 2010 .

[104]  E. M. Alkoy,et al.  Investigation of the Electrical Properties of [111] Oriented PbZrO3 Thin Films Obtained by Sol–Gel Process , 2006 .

[105]  Hong Wang,et al.  Low-Temperature Sintering (Ba0.6Sr0.4)TiO3 Thick Film Prepared by Screen Printing , 2009 .

[106]  Guangzu Zhang,et al.  Large pyroelectric response in (Pb0.87La0.02Ba0.1)(Zr0.7Sn0.3−xTix)O3 antiferroelectric ceramics under DC bias field , 2011 .

[107]  Liang-ying Zhang,et al.  Grain size dependence of dielectric and field-induced strain properties of chemical prepared (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics , 2002 .

[108]  G. Haertling,et al.  Transverse electro-optic effect of antiferroelectric lead zirconate thin films. , 1992, Optics letters.

[109]  G. Kugel,et al.  Phase transitions in lead-lanthanum zirconate-titanate ceramics with a Zr/Ti ratio of 92/8 and a La content of up to 1 at.% , 1995 .

[110]  A. Grishin,et al.  Pyroelectric PbSc0.5Ta0.5O3/Y1Ba2Cu3O7−x thin‐film heterostructures , 1995 .

[111]  N. Murafa,et al.  Structure and properties of plasma sprayed BaTiO3 coatings: Spray parameters versus structure and photocatalytic activity , 2011 .

[112]  I. Kim,et al.  Antiferroelectric characteristics and low frequency dielectric dispersion of Pb1.075La0.025(Zr0.95Ti0.05)O3 thin films , 2003 .

[113]  S. Hayashi,et al.  Superlattices of PbZrO3 and PbTiO3 prepared by multi‐ion‐beam sputtering , 1996 .

[114]  Chen Zhu,et al.  Investigation on the effects of PbO content and seeding layers of TiO2 and ZrO2 on the orientation and microstructure of Pb(Zr0.52Ti0.48)O3 ferroelectric films grown by reverse dip-coating method of sol-gel , 2006 .

[115]  M. Kosec,et al.  Sol-Gel Processing of PbZrO3 Thin Films , 2000 .

[116]  J. Zhai,et al.  Electric fatigue in Pb(Nb,Zr,Sn,Ti)O3 thin films grown by a sol–gel process , 2003 .

[117]  Leslie E. Cross,et al.  Effect of compositional variations on electrical properties in phase switching (Pb,La)(Zr,Ti,Sn)O3 thin and thick films , 2000 .

[118]  K. Szot,et al.  Dielectric and pyroelectric properties of Nb-doped Pb(Zr0.92Ti0.08)O3 ceramics , 2000 .

[119]  Seshu B. Desu,et al.  Low temperature perovskite formation of lead zirconate titanate thin films by a seeding process , 1993 .

[120]  Roger W. Whatmore,et al.  Pyroelectric devices and materials , 1986 .

[121]  Xihong Hao,et al.  Dielectric Properties of Pb1-xBaxZrO3 Thin Films with Higher Barium Content , 2009 .

[122]  Fritz Aldinger,et al.  Effects of PbO content on the sintering behavior, microstructure, and properties of La-doped PZST antiferroelectric ceramics , 2004 .

[123]  X. Lou Polarization fatigue in ferroelectric thin films and related materials , 2009 .

[124]  E. Sawaguchi,et al.  Antiferroelectric Structure of Lead Zirconate , 1951 .

[125]  L. E. Cross,et al.  History of Ferroelectrics , 1986 .

[126]  Genshui Wang,et al.  Reversible pyroelectric response in Pb0.955La0.03(Zr0.42Sn0.40Ti0.18)O3 ceramics near its phase transition , 2009 .

[127]  Longjie Zhou,et al.  Discontinuous switching in antiferroelectric ceramics monitored by acoustic emissions , 2005 .

[128]  Z. Ujma,et al.  Phase transitions in PZT-95/5 ceramics studied by dielectric and pyroelectric measurements: unusual properties in the vicinity of the antiferroelectric-ferroelectric phase transition , 1995 .

[129]  Yanxue Tang,et al.  Pyroelectric properties of [111]-oriented Pb(Mg1∕3Nb2∕3)O3–PbTiO3 crystals , 2005 .

[130]  V. Tennery High‐Temperature Phase Transitions in PbZrO3 , 1966 .

[131]  C. Raman,et al.  The α-β; Transformation of Quartz , 1940, Nature.

[132]  S. Saha,et al.  Dielectric properties of La-modified antiferroelectric PbZrO3 thin films , 2002 .

[133]  W. Mock,et al.  Pulse charging of nanofarad capacitors from the shock depoling of PZT 56/44 and PZT 95/5 ferroelectric ceramics , 1978 .

[134]  T. Sands,et al.  Effect of crystallographic orientation on ferroelectric properties of PbZr0.2Ti0.8O3 thin films , 1993 .

[135]  Zhe Zhao,et al.  Preparation and properties of lead zirconate stannate titanate sintered by spark plasma sintering , 2004 .

[136]  Zhuo Xu,et al.  Synthesis, sintering and characterization of PNZST ceramics from high-energy ball milling process , 2008 .

[137]  Xihong Hao,et al.  Composition-dependent electrical properties of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thin films grown on platinum-buffered silicon substrates , 2007 .

[138]  S. Sampayan,et al.  Polarization switching of and electron emission from lead lanthanum zirconate titanate ceramics , 2004 .

[139]  J. Chu,et al.  Fabrication of thick Pb(Zr,Ti)O3 (PZT) films by modified sol–gel methods for application in MEMS , 2002 .

[140]  Zhengkui Xu,et al.  Incommensurately Modulated Polar Structures in Antiferroelectric Tin‐Modified Lead Zirconate Titanate: II, Dependence of Structure‐Property Relations on Tin Content , 2005 .

[141]  V. M. Ishchuk,et al.  Two-phase (ferroelectric and antiferroelectric) nuclei and diffuse phase transition in the vicinity of the ferroelectric–antiferroelectric–paraelectric triple point , 2001 .

[142]  J. Zhai,et al.  Dielectric properties of oriented PbZrO3 thin films grown by sol-gel process , 2002 .

[143]  Gene H. Haertling,et al.  Antiferroelectric lead zirconate thin films derived from acetate precursors , 1995, Journal of Materials Science.

[144]  M. Tinkham,et al.  FAR-INFRARED FERROELECTRIC VIBRATION MODE IN SrTiO$sub 3$ , 1962 .

[145]  Amit L. Sharma,et al.  Pyroelectric response of ferroelectric thin films , 2004 .

[146]  Xihong Hao,et al.  Low-temperature growth of (1 1 0)-preferred Pb0.97La0.02(Zr0.88Sn0.10Ti0.02)O3 antiferroelectric thin films on LaNiO3/Si substrate , 2008 .

[147]  T. S. P. S.,et al.  GROWTH , 1924, Nature.

[148]  D. Viehland,et al.  Effects of lanthanum modification on the antiferroelectric‐ferroelectric stability of high zirconium‐content lead zirconate titanate , 1994 .

[149]  Xihong Hao,et al.  Energy-storage performance and electrocaloric effect in (100)-oriented Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films , 2011 .

[150]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[151]  I-Wei Chen,et al.  Temperature–Time Texture Transition of Pb(Zr1−xTix)O3 Thin Films: I, Role of Pb-rich Intermediate Phases , 1994 .

[152]  J. Zhai,et al.  Orientation-dependent dielectric properties of Ba(Sn0.15Ti0.85)O3 thin films prepared by sol–gel method , 2009 .

[153]  A. F. Devonshire XCVI. Theory of barium titanate , 1949 .

[154]  Z. Ujma,et al.  Phase transitions and spontaneous polarization in PbZrO3 , 1975 .

[155]  Qiang Li,et al.  Molten Salts Synthesis of Relaxor Ferroelectrics PMN-PT Powders , 2007 .

[156]  Qiang Li,et al.  Molten salt synthesis of lead lanthanum zirconate titanate stannate powders and ceramics , 2006 .

[157]  Robert W. Schwartz,et al.  Chemical Solution Deposition of Perovskite Thin Films , 1997 .

[158]  Xihong Hao,et al.  Orientation-dependent phase switching process and strains of Pb0.97La0.02(Zr0.85Sn0.13Ti0.02)O3 antiferroelectric thin films , 2010 .

[159]  Xihong Hao,et al.  Thickness and frequency dependence of electric-field-induced strains of sol-gel derived (Pb0.97La0.02)(Zr0.95Ti0.05)O3 antiferroelectric films , 2010 .

[160]  G. Samara,et al.  Important Generalization Concerning the Role of Competing Forces in Displacive Phase Transitions , 1975 .

[161]  W. Cochran Crystal Stability and the Theory of Ferroelectricity , 1959 .

[162]  Wenguang Zhao,et al.  Structure and electrical properties of PbZrO3 antiferroelectric thin films doped with barium and strontium , 2011 .

[163]  X. Lou Why do antiferroelectrics show higher fatigue resistance than ferroelectrics under bipolar electrical cycling , 2009 .

[164]  Kenji Uchino,et al.  Electrostrictive effects in antiferroelectric perovskites , 1981 .

[165]  Xihong Hao,et al.  Preparation of PLZT Antiferroelectric Thin Films on ZrO2 Buffered Substrates , 2007 .

[166]  Xu,et al.  Impurity-induced incommensuration in antiferroelectric La-modified lead zirconate titanate. , 1995, Physical review. B, Condensed matter.

[167]  S. B. Krupanidhi,et al.  Dielectric and dc electrical studies of antiferroelectric lead zirconate thin films , 2000 .

[168]  T. Choi,et al.  Enhancement of dielectric and ferroelectric properties of PbZrO3/PbTiO3 artificial superlattices , 2005 .

[169]  K. Udayakumar,et al.  Electric field forced phase switching in La‐modified lead zirconate titanate stannate thin films , 1994 .

[170]  R. Fornari,et al.  Epitaxial growth of ferroelectric oxide films , 2006 .

[171]  Xihong Hao,et al.  Effects of oxide buffer layers on the microstructure and electrical properties of PLZST 2/87/10/3 antiferroelectric thin films , 2011 .

[172]  Jenn–Ming Wu,et al.  Thickness-dependent dielectric properties of nanoscale Pt / (Pb,Ba )ZrO3/BaPbO3 capacitors , 2007 .

[173]  Jayanta Parui,et al.  Enhancement of charge and energy storage in sol-gel derived pure and La-modified PbZrO3 thin films , 2008 .

[174]  D. Viehland,et al.  Coexistence of incommensurate antiferroelectric and relaxorlike ferroelectric orderings in high Zr‐content La‐modified lead zirconate titanate ceramics , 1996 .

[175]  K. Saito,et al.  Structural and dielectric properties of perovskite-type artificial superlattices , 2006 .

[176]  Qiming Zhang,et al.  Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02) (Ti,Zr,Sn)O3 family of ceramics , 1989 .

[177]  X. Yao,et al.  Dielectric properties and phase transitions of (Pb0.87La0.02Ba0.1)(Zr0.6Sn0.4−xTix)O3 ceramics with compositions near AFE/RFE phase boundary , 2004 .

[178]  Zhuo Xu,et al.  Effect of dc bias on pressure-induced depolarization of Pb(Nb,Zr,Sn,Ti)O3 ceramics , 2008 .

[179]  E. Sawaguchi,et al.  Dielectric Properties of Lead Zirconate , 1951 .

[180]  L. Kong,et al.  Preparation of antiferroelectric lead zirconate titanate stannate ceramics by high-energy ball milling process , 2002 .

[181]  Scott L. Swartz,et al.  Textured-Ba(Zr,Ti)O3 piezoelectric ceramics fabricated by templated grain growth (TGG) , 2010 .

[182]  G. Shirane Ferroelectricity and Antiferroelectricity in Ceramic PbZr O 3 Containing Ba or Sr , 1952 .

[183]  K. Yao,et al.  Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films , 2010 .

[184]  S. Hayashi,et al.  Antiferroelectric PbZrO3 thin films prepared by multi‐ion‐beam sputtering , 1995 .

[185]  M. Alexe,et al.  Capacitance tuning in antiferroelectric–ferroelectric PbZrO3–Pb(Zr0.8Ti0.2)O3 epitaxial multilayers , 2008 .

[186]  Xihong Hao,et al.  Preparation of highly (111)-oriented (Pb,La)(Zr,Sn,Ti)O3 (PLZST) antiferroelectric thin films by modified sol-gel process using a novel tin source, dibutyloxide of tin , 2007 .

[187]  Qiang Li,et al.  Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate ceramics on microstructure and electric properties , 2007 .

[188]  Y. Koyama,et al.  Coexistence of ferroelectricity and antiferroelectricity in lead zirconate titanate , 2004 .

[189]  R. Cowley,et al.  Lattice Dynamics and Phase Transitions of Strontium Titanate , 1964 .

[190]  Zhengkui Xu,et al.  Effect of Sn doping on the phase transition behaviors of antiferroelectric lead zirconate titanate , 2003 .

[191]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[192]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[193]  H. Chan,et al.  Electrical properties of highly (111)-oriented lead zirconate thin films , 2004 .

[194]  L. E. Cross,et al.  Antiferroelectric-to-ferroelectric phase switching PLSnZT ceramics. II. The effect of pre-stress conditions on the strain behavior , 1996, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics.

[195]  R. Whatmore,et al.  Structural phase transitions in lead zirconate , 1979 .

[196]  J. Zhai,et al.  (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thin films grown on LaNiO3-buffered and Pt-buffered silicon substrates by sol-gel processing , 2005 .

[197]  D. Viehland,et al.  Piezoelectric properties of sol‐gel‐derived ferroelectric and antiferroelectric thin layers , 1994 .

[198]  J. D. Keck,et al.  Pressure-temperature phase diagrams for several modified lead zirconate ceramics , 1978 .

[199]  Xihong Hao,et al.  Electrical properties of Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thin films on TiO2 buffer layer , 2008 .

[200]  P. Wakeley,et al.  Synthesis , 2013, The Role of Animals in Emerging Viral Diseases.

[201]  X. Tan,et al.  Texture control and ferroelectric properties of Pb(Nb,Zr,Sn,Ti)O3 thin films prepared by chemical solution method , 2006 .

[202]  D. Payne,et al.  The effect of external field symmetry on the antiferroelectric‐ferroelectric phase transformation , 1996 .

[203]  Genshui Wang,et al.  Low temperature synthesis of Ba0.70Sr0.30TiO3 powders by the molten-salt method , 2007 .

[204]  O. Fesenko,et al.  The structural phase transitions in lead zirconate in super-high electric fields , 1978 .

[205]  J. Zhai,et al.  Phase stability and pyroelectricity of antiferroelectric PLZST oxide , 2008 .

[206]  S. Trolier-McKinstry,et al.  REACTIVE MAGNETRON CO-SPUTTERED ANTIFERROELECTRIC LEAD ZIRCONATE THIN FILMS , 1995 .

[207]  T. Mitsui Theory of the Ferroelectric Effect in Rochelle Salt , 1958 .

[208]  Nicola A. Spaldin,et al.  Theoretical Prediction of New High-Performance Lead-Free Piezoelectrics , 2005 .

[209]  Baojian Xu,et al.  Crystal orientation dependence of the dielectric properties for epitaxial BaZr0.15Ti0.85O3 thin films , 2007 .

[210]  L. Martin,et al.  Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films , 2010 .

[211]  V. Palkar,et al.  Dielectric properties of oriented thin films of PbZrO3 on Si produced by pulsed laser ablation , 1998 .

[212]  R. Blinc,et al.  High‐Temperature Phase Transition in KH2PO4 , 1968 .

[213]  P. W. Anderson,et al.  Ordering and Antiferromagnetism in Ferrites , 1956 .

[214]  L. Kong,et al.  Preparation and characterization of lead zirconate ceramics from high-energy ball milled powder , 2001 .

[215]  R. Scholz,et al.  Growth, microstructure, and ferroelectric properties of Pb(Zr0.4Ti0.6)O3∕PbZrO3 superlattices prepared on SrTiO3 (100) substrates by pulsed laser deposition , 2007 .

[216]  X. Dong,et al.  Pressure‐induced ferroelectric to antiferroelectric phase transformation in porous PZT95/5 ceramics , 2007 .

[217]  Xihong Hao,et al.  Fabrication and Characterization of Sol–Gel Derived (100)‐Textured (Pb0.97La0.02)(Zr0.95Ti0.05)O3 Thin Films , 2009 .

[218]  Yoon J. Song,et al.  Low temperature fabrication and properties of sol-gel derived (111) oriented Pb(Zr1−xTix)O3 thin films , 1998 .

[219]  Woo-Sik Kim,et al.  Influence of preferred orientation of lead zirconate titanate thin film on the ferroelectric properties , 2001 .

[220]  D. Berlincourt,et al.  RELEASE OF ELECTRIC ENERGY IN PbNb(Zr, Ti, Sn)O3 BY TEMPERATURE‐ AND BY PRESSURE‐ENFORCED PHASE TRANSITIONS , 1963 .

[221]  D. Payne,et al.  The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics , 1981 .

[222]  B. Tuttle,et al.  Pressure‐Induced Phase Transformation of Controlled‐Porosity Pb(Zr0.95Ti0.05)O3 Ceramics , 2004 .

[223]  Zhai Jiwei,et al.  Orientation control and dielectric properties of sol–gel deposited Ba (Ti, Zr)O3 thin films , 2004 .

[224]  D. M. Smyth,et al.  Energy storage in ceramic dielectrics , 1972 .

[225]  Xihong Hao,et al.  Improved Energy Storage Performance and Fatigue Endurance of Sr‐Doped PbZrO3 Antiferroelectric Thin Films , 2009 .

[226]  Zhengkui Xu,et al.  Preparation and electrical properties of highly (111) oriented antiferroelectric PLZST films by radio frequency magnetron sputtering , 2007 .

[227]  K. Yoon,et al.  Electric fatigue in sol–gel prepared Pb(Zr,Sn,Ti)NbO3 thin films , 1998 .

[228]  S. Trolier-McKinstry,et al.  Structural and electrical properties of antiferroelectric lead zirconate thin films prepared by reactive magnetron co-sputtering , 1997 .

[229]  Xihong Hao,et al.  phase transformation properties of highly (100)-oriented plzst 2/85/12/3 antiferroelectric thin films deposited on nb-srtio3 single-crystal substrates , 2011 .

[230]  K. Yao,et al.  Piezoelectric K0.5Na0.5NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution deposition , 2008 .

[231]  Zhengkui Xu,et al.  Effects of quenched disorder on La-modified lead zirconate titanate: Long- and short-range ordered structurally incommensurate phases, and glassy polar clusters , 1998 .

[232]  X. Tang,et al.  Surface morphology and chemical states of highly oriented PbZrO3 thin films prepared by a sol-gel process , 2001 .

[233]  E. Subbarao Ferroelectric and antiferroelectric materials , 1973 .

[234]  Xiangcheng Chu,et al.  Preparation and characterization of sol-gel derived (100)-textured Pb(Zr, Ti)O3 thin films: PbO seeding role in the formation of preferential orientation , 2004 .

[235]  X. Yao,et al.  Preparation of conductive LaNiO3 film electrodes by a simple chemical solution deposition technique for integrated ferroelectric thin film devices , 2003 .

[236]  Xihong Hao,et al.  Effects of CeO2 buffer layer thickness on the orientation and dielectric properties of Ba(Zr0.20Ti0.80)O3 thin films , 2009 .

[237]  R. Pinto,et al.  Ferroelectric behavior in thin films of antiferroelectric materials , 1998 .

[238]  N. Wakiya,et al.  Low-temperature epitaxial growth of conductive LaNiO3 thin films by RF magnetron sputtering , 2002 .

[239]  Bernard Jaffe,et al.  Antiferroelectric Ceramics with Field-Enforced Transitions: A New Nonlinear Circuit Element , 1961, Proceedings of the IRE.

[240]  I-Wei Chen,et al.  Temperature–Time Texture Transition of Pb(Zr1−xTix)O3 Thin Films: II, Heat Treatment and Compositional Effects , 1994 .

[241]  Viehland,et al.  Weak ferroelectricity in antiferroelectric lead zirconate. , 1995, Physical review. B, Condensed matter.

[242]  S. Krupanidhi,et al.  Electrocaloric effect in antiferroelectric PbZrO3 thin films , 2008 .

[243]  Y. L. Zhou,et al.  Reduction of leakage current by Co doping in Pt/Ba0.5Sr0.5TiO3/Nb–SrTiO3 capacitor , 2004 .

[244]  J. Zhai,et al.  Dielectric properties of lead lanthanum zirconate stanate titanate antiferroelectric thin films prepared by pulsed laser deposition , 2004 .

[245]  X. Tan,et al.  Strains and Polarization During Antiferroelectric-Ferroelectric Phase Switching in Pb0.99Nb0.02[(Zr0.57Sn0.43)1−yTiy]0.98O3 Ceramics , 2011 .

[246]  L. Eric Cross,et al.  DEPENDENCE OF ELECTRICAL PROPERTIES ON FILM THICKNESS IN LANTHANUM-DOPED LEAD ZIRCONATE TITANATE STANNATE ANTIFERROELECTRIC THIN FILMS , 1999 .