Asymptotic Performance of Projection Estimators in Standard and Hyperbolic Wavelet Bases
暂无分享,去创建一个
[1] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[2] Richard G. Baraniuk,et al. Kronecker Compressive Sensing , 2012, IEEE Transactions on Image Processing.
[3] P. Massart,et al. Concentration inequalities and model selection , 2007 .
[4] T. Cai. On information pooling, adaptability and superefficiency in nonparametric function estimation , 2008 .
[5] Harrison H. Zhou,et al. A data-driven block thresholding approach to wavelet estimation , 2009, 0903.5147.
[6] D. Donoho. Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .
[7] Markus Reiss,et al. Asymptotic equivalence for nonparametric regression with multivariate and random design , 2006, math/0607342.
[8] R. Hochmuth. N–Term Approximation in Anisotropic Function Spaces , 2002 .
[9] T. Tony Cai,et al. ON BLOCK THRESHOLDING IN WAVELET REGRESSION: ADAPTIVITY, BLOCK SIZE, AND THRESHOLD LEVEL , 2002 .
[10] D. Picard,et al. Anisotropic de-noising in functional deconvolution model with dimension-free convergence rates , 2012, 1211.7114.
[11] R. V. Sachs,et al. Ideal denoising within a family of tree-structured wavelet estimators , 2011 .
[12] Anestis Antoniadis,et al. Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study , 2001 .
[13] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[14] G. Claeskens,et al. Hyperbolic wavelet thresholding methods and the curse of dimensionality through the maxiset approach , 2013 .
[15] Yu. I. Ingster,et al. Estimation and detection of functions from anisotropic Sobolev classes , 2011 .
[16] Michael H. Neumann. MULTIVARIATE WAVELET THRESHOLDING IN ANISOTROPIC FUNCTION SPACES , 2000 .
[17] T. Cai. Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .
[18] Maxisets for μ-thresholding rules , 2008 .
[19] O. Lepski. Adaptive estimation over anisotropic functional classes via oracle approach , 2014, 1405.4504.
[20] Patrice Abry,et al. The hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic fields , 2015 .
[21] Vladimir Temlyakov,et al. Universal bases and greedy algorithms for anisotropic function classes , 2002 .
[22] Yu. I. Ingster,et al. Signal detection for inverse problems in a multidimensional framework , 2014, Mathematical Methods of Statistics.
[23] Albert Cohen,et al. Maximal Spaces with Given Rate of Convergence for Thresholding Algorithms , 2001 .
[24] F. Autin,et al. Combining thresholding rules: a new way to improve the performance of wavelet estimators , 2012 .
[25] Erwan Le Pennec,et al. Thresholding methods to estimate copula density , 2008, J. Multivar. Anal..
[26] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[27] R. DeVore,et al. Hyperbolic Wavelet Approximation , 1998 .
[28] Rainer von Sachs,et al. Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra , 1997 .
[29] Florent Autin. On the performances of a new thresholding procedure using tree structure , 2008 .
[30] F. Autin,et al. Block‐threshold‐adapted Estimators via a Maxiset Approach , 2014 .
[31] A. Dalalyan,et al. Minimax Testing of a Composite null Hypothesis Defined via a Quadratic Functional in the Model of regression , 2012 .