A Dual Frequency Ka-Band Printed Fresnel Reflector for Ground Terminal Applications

Satellite-based telecommunication systems operating in Ka-band require high gain ground terminal antennas. A promising architecture based on dual frequency printed Fresnel reflectors is presented in this paper. The complete development of this antenna including its design methodology, manufacturing, and testing is described. In order to scan its beam, the proposed antenna system can either be combined with electric motors or be transformed into a reconfigurable reflectarray system by replacing the passive reflecting cells by reconfigurable ones. A possible way of implementing such electronically reconfigurable reflecting cells is also presented.

[1]  Long Li,et al.  Frequency Selective Reflectarray Using Crossed-Dipole Elements With Square Loops for Wireless Communication Applications , 2011, IEEE Transactions on Antennas and Propagation.

[2]  S. K. Barton,et al.  Flat printed lens and reflector antennas , 1995 .

[3]  James C. Wiltse,et al.  The Fresnel zone plate antenna , 1991 .

[4]  A. Kelkar,et al.  FLAPS: conformal phased reflecting surfaces , 1991, Proceedings of the 1991 IEEE National Radar Conference.

[5]  M. Okoniewski,et al.  An electronically tunable reflectarray using varactor diode-tuned elements , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[6]  T. A. Metzler,et al.  Analysis of a reflectarray antenna using microstrip patches of variable size , 1993 .

[7]  A. Berthon,et al.  Integral equation analysis of radiating structures of revolution , 1989 .

[8]  Sean Victor Hum,et al.  Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review , 2013, IEEE Transactions on Antennas and Propagation.

[9]  J.-M. Colin Phased array radars in France: present and future , 1996, Proceedings of International Symposium on Phased Array Systems and Technology.

[10]  S. K. Barton,et al.  Phase correcting zonal reflector incorporating rings , 1995 .

[11]  Giovanni Toso,et al.  Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band , 2013, IEEE Transactions on Antennas and Propagation.

[12]  G. Toso,et al.  Dual frequency Ka-band Fresnel reflectors , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[13]  P. Ratajczak,et al.  Reconfigurable active reflector based on High Impedance Surface , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[14]  W. Menzel,et al.  Flat printed reflector antenna for mm-wave applications , 1988 .

[15]  Daniele Bresciani,et al.  A 1.3 m Earth Deck Reflectarray for a Ku band contoured beam antenna , 2011 .

[16]  S.K. Barton,et al.  Fresnel zone plate reflector incorporating rings , 1993, IEEE Microwave and Guided Wave Letters.

[17]  G. Toso,et al.  Dual frequency Ka-band reflectarray for ground terminal application , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[18]  J.T. Bernhard,et al.  Integration of packaged RF MEMS switches with radiation pattern reconfigurable square spiral microstrip antennas , 2006, IEEE Transactions on Antennas and Propagation.

[19]  J. Huang,et al.  A C/ka dual frequency dual Layer circularly polarized reflectarray antenna with microstrip ring elements , 2004, IEEE Transactions on Antennas and Propagation.

[20]  G. Toso,et al.  Printed reflector for Ka-band applications , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.