A self-adaptive finite element approach for simulation of mixed-mode delamination using cohesive zone models

Oscillations observed in the load–displacement response of brittle interfaces modeled by cohesive zone elements in a quasi-static finite element framework are artifacts of the discretization. The typical limit points in this oscillatory path can be traced by application of path-following techniques, or avoided altogether by adequately refining the mesh until the standard iterative Newton–Raphson method becomes applicable. Both strategies however lead to an unacceptably high computational cost and a low efficiency, justifying the development of a process driven hierarchical extension of the discretization used in the process zone of a cohesive crack. A self-adaptive enrichment scheme within individual cohesive zone elements driven by the physics governing the problem, is an efficient solution that does not require further mesh refinements. A two-dimensional mixed-mode example in a general framework with an irreversible cohesive zone law shows that an enriched formulation restores the smoothness of the solution in structures that are discretized in a relatively coarse manner.

[1]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[2]  V. Tomar,et al.  Bounds for element size in a variable stiffness cohesive finite element model , 2004 .

[3]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[4]  F. Feyel,et al.  Interface debonding models: a viscous regularization with a limited rate dependency , 2001 .

[5]  J. W. Foulk An examination of stability in cohesive zone modeling , 2010 .

[6]  L. Anand,et al.  Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals , 2004 .

[7]  de R René Borst,et al.  On the numerical integration of interface elements , 1993 .

[8]  A. Waas,et al.  Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer–matrix composite , 2006 .

[9]  Marc G. D. Geers,et al.  Cohesive zone modeling for structural integrity analysis of IC interconnects , 2007, Microelectron. Reliab..

[10]  M. A. Crisfield,et al.  A new arc-length method for handling sharp snap-backs , 1998 .

[11]  Stephen R Hallett,et al.  Cohesive zone length in numerical simulations of composite delamination , 2008 .

[12]  van den Mj Marco Bosch,et al.  An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion , 2006 .

[13]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[14]  J. G. Williams,et al.  The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints , 2003 .

[15]  Mgd Marc Geers,et al.  ENHANCED SOLUTION CONTROL FOR PHYSICALLY AND GEOMETRICALLY NON-LINEAR PROBLEMS. PART I|THE SUBPLANE CONTROL APPROACH , 1999 .

[16]  A. Needleman,et al.  A cohesive segments method for the simulation of crack growth , 2003 .

[17]  Qingda Yang,et al.  Cohesive models for damage evolution in laminated composites , 2005 .

[18]  R. Borst Computation of post-bifurcation and post-failure behavior of strain-softening solids , 1987 .

[19]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[20]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[21]  T. K. Hellen On the method of virtual crack extensions , 1975 .

[22]  M. A. Gutiérrez Energy release control for numerical simulations of failure in quasi‐brittle solids , 2004 .

[23]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[24]  R. Borst Numerical aspects of cohesive-zone models , 2003 .

[25]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[26]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[27]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[28]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[29]  Mgd Marc Geers,et al.  Enhanced solution control for physically and geometrically non‐linear problems. Part II—comparative performance analysis , 1999 .

[30]  Michael R Wisnom,et al.  Modelling discrete failures in composites with interface elements , 2010 .

[31]  C. Shih,et al.  Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding , 1988 .

[32]  Michael R Wisnom,et al.  A combined stress-based and fracture-mechanics-based model for predicting delamination in composites , 1993 .

[33]  Giulio Alfano,et al.  Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model , 2002 .

[34]  G.A.O. Davies,et al.  Decohesion finite element with enriched basis functions for delamination , 2009 .

[35]  V. Tvergaard Effect of fibre debonding in a whisker-reinforced metal , 1990 .

[36]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[37]  O. Allix,et al.  Interlaminar interface modelling for the prediction of delamination , 1992 .

[38]  M. Elices,et al.  The cohesive zone model: advantages, limitations and challenges , 2002 .

[39]  N. Chandra,et al.  Some issues in the application of cohesive zone models for metal–ceramic interfaces , 2002 .

[40]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[41]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[42]  O. Allix,et al.  Some aspects of interlaminar degradation in composites , 2000 .

[43]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[44]  M Mohammad Samimi,et al.  An enriched cohesive zone model for delamination in brittle interfaces , 2009 .

[45]  Giulio Alfano,et al.  Solution strategies for the delamination analysis based on a combination of local‐control arc‐length and line searches , 2003 .

[46]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[47]  E. Riks The Application of Newton's Method to the Problem of Elastic Stability , 1972 .

[48]  Paul A. Wawrzynek,et al.  An interactive approach to local remeshing around a propagating crack , 1989 .

[49]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[50]  Walter H. Gerstle,et al.  Finite Element Meshing Criteria for Crack Problems , 1990 .

[51]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .