Understanding compression: Modeling the effects of dynamic-range compression in hearing aids

Abstract The purpose of this paper is to study the effects of dynamic-range compression and linear amplification on speech intelligibility and quality for hearing-impaired listeners. The paper focuses on the relative benefit of compression compared to linear amplification and the effect of varying the number of compression channels and the compression time constants. The stimuli are sentences in a background of stationary speech-shaped noise. Speech intelligibility and quality indices are used to predict the listener responses for a mild, moderate sloping, and moderate/severe hearing loss. The results show a strong interaction between signal processing, speech intensity, and hearing loss. The results are interpreted in terms of the two major effects of compression on speech: the increase in audibility and the decrease in temporal and spectral envelope contrast. Sumario El propósito de este trabajo fue estudiar los efectos de la compresión del rango dinámico y de la amplificación lineal sobre la inteligibilidad y la calidad del lenguaje en sujetos hipoacúsicos. El artículo se concentra en el beneficio relativo de la compresión comparado con la amplificación lineal y con el efecto de variar el número de canales de compresión, así como de la compresión de constantes temporales. Los estímulos fueron frases en un fondo de ruido estacionario con envolvente de lenguaje. Los índices de inteligibilidad y la calidad del lenguaje se utilizan para predecir las respuestas del sujeto con una pérdida auditiva leve de pendiente moderada y con una hipoacusia moderada/severa. Los resultados muestran una fuerte interacción entre el procesamiento de la señal, la intensidad del lenguaje y la pérdida auditiva. Los resultados se interpretan en términos de los dos principales efectos de la compresión sobre el lenguaje: el aumento en la audibilidad y la disminución en el contraste de la envolvente temporal y espectral.

[1]  D D Dirks,et al.  Subjective judgements of clarity and intelligibility for filtered stimuli with equivalent speech intelligibility index predictions. , 1998, Journal of speech, language, and hearing research : JSLHR.

[2]  James M. Kates,et al.  A Time-Frequency Modulation Model of Speech Quality , 2007, 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[3]  E W Yund,et al.  The Effect of Multichannel Compression on Vowel and Stop‐Consonant Discrimination in Normal‐Hearing and Hearing‐Impaired Subjects , 1995, Ear and hearing.

[4]  B C Moore Use of a Loudness Model for Hearing Aid Fitting. IV. Fitting Hearing Aids with Multi-Channel Compression so as to Restore ‘Normal’ Loudness for Speech at Different Levels , 2000, British journal of audiology.

[5]  H Levitt,et al.  The effect of compression ratio and release time on the categorical rating of sound quality. , 1998, The Journal of the Acoustical Society of America.

[6]  E W Yund,et al.  Enhanced speech perception at low signal-to-noise ratios with multichannel compression hearing aids. , 1995, The Journal of the Acoustical Society of America.

[7]  Graham Naylor,et al.  Linear and nonlinear hearing aid fittings – 1. Patterns of benefit , 2006, International journal of audiology.

[8]  H. Dillon,et al.  The National Acoustic Laboratories' (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid , 1986, Ear and hearing.

[9]  M. Uschold,et al.  Methods and applications , 1953 .

[10]  Gitte Keidser,et al.  The preferred response slopes and two-channel compression ratios in twenty listening conditions by hearing-impaired and normal-hearing listeners and their relationship to the acoustic input , 2005, International journal of audiology.

[11]  R. Lippmann,et al.  Study of multichannel amplitude compression and linear amplification for persons with sensorineural hearing loss. , 1981, The Journal of the Acoustical Society of America.

[12]  David Fabry,et al.  Speech and music quality ratings for linear and nonlinear hearing aid circuitry. , 2007, Journal of american academy of audiology.

[13]  R. Fay,et al.  Compression: From Cochlea to Cochlear Implants , 2013, Springer Handbook of Auditory Research.

[14]  C W Turner,et al.  Quantifying the contribution of audibility to recognition of compression-amplified speech. , 1999, Ear and hearing.

[15]  Michael Nilsson,et al.  Development of a test environment to evaluate performance of modern hearing aid features. , 2005, Journal of the American Academy of Audiology.

[16]  Lorienne M Jenstad,et al.  Using Multichannel Wide-Dynamic Range Compression in Severely Hearing-Impaired Listeners: Effects on Speech Recognition and Quality , 2005, Ear and hearing.

[17]  James M Kates,et al.  Effects of Noise, Nonlinear Processing, and Linear Filtering on Perceived Speech Quality , 2010, Ear and hearing.

[18]  B C Moore,et al.  A comparison of behind-the-ear high-fidelity linear hearing aids and two-channel compression aids, in the laboratory and in everyday life. , 1983, British journal of audiology.

[19]  James M. Kates,et al.  The Hearing-Aid Speech Quality Index (HASQI) , 2010 .

[20]  G Keidser,et al.  The Preferred Number of Channels (One, Two, or Four) in NAL-NL1 Prescribed Wide Dynamic Range Compression (WDRC) Devices , 2001, Ear and hearing.

[21]  M C Martin,et al.  Is AGC beneficial in hearing aids? , 1984, British journal of audiology.

[22]  Sheila Moodie,et al.  The Desired Sensation Level Multistage Input/Output Algorithm , 2005, Trends in amplification.

[23]  Braida Ld,et al.  Multiband compression limiting for hearing-impaired listeners. , 1987 .

[24]  H Dillon Tutorial Compression? Yes, But for Low or High Frequencies, for Low or High Intensities, and with What Response Times? , 1996, Ear and hearing.

[25]  G Keidser,et al.  NAL-NL1 procedure for fitting nonlinear hearing aids: characteristics and comparisons with other procedures. , 2001, Journal of the American Academy of Audiology.

[26]  Yi Hu,et al.  Objective measures for predicting speech intelligibility in noisy conditions based on new band-importance functions. , 2009, The Journal of the Acoustical Society of America.

[27]  E W Yund,et al.  Multichannel compression hearing aids: effect of number of channels on speech discrimination in noise. , 1995, The Journal of the Acoustical Society of America.

[28]  G. Carter,et al.  Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing , 1973 .

[29]  Martin Hansen Effects of Multi-Channel Compression Time Constants on Subjectively Perceived Sound Quality and Speech Intelligibility , 2002, Ear and hearing.

[30]  T Houtgast,et al.  Compression and expansion of the temporal envelope: evaluation of speech intelligibility and sound quality. , 1999, The Journal of the Acoustical Society of America.

[31]  James M. Kates,et al.  A speech quality metric based on a cochlear model. , 2009 .

[32]  S. Soli,et al.  Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise. , 1994, The Journal of the Acoustical Society of America.

[33]  J. Kates Principles of Digital Dynamic-Range Compression , 2005, Trends in amplification.

[34]  Lorienne M Jenstad,et al.  Quantifying the effect of compression hearing aid release time on speech acoustics and intelligibility. , 2005, Journal of speech, language, and hearing research : JSLHR.

[35]  Karen A Doherty,et al.  Subjective and objective effects of fast and slow compression on the perception of reverberant speech in listeners with hearing loss. , 2008, Journal of speech, language, and hearing research : JSLHR.

[36]  D J Van Tasell,et al.  Quantifying the relation between speech quality and speech intelligibility. , 1995, Journal of speech and hearing research.

[37]  C Elberling Loudness scaling revisited. , 1999, Journal of the American Academy of Audiology.

[38]  Pamela E Souza,et al.  Effects of Compression on Speech Acoustics, Intelligibility, and Sound Quality , 2002, Trends in amplification.

[39]  Teresa Y C Ching,et al.  Methods and Applications of the Audibility Index in Hearing Aid Selection and Fitting , 2002, Trends in amplification.

[40]  H Levitt,et al.  Preferred Listening Levels for Linear and Slow‐Acting Compression Hearing Aids , 1995, Ear and hearing.

[41]  James M Kates,et al.  Coherence and the speech intelligibility index. , 2004, The Journal of the Acoustical Society of America.

[42]  H Levitt,et al.  Effect of release time in compression hearing aids: paired-comparison judgments of quality. , 1995, The Journal of the Acoustical Society of America.

[43]  Julius O. Smith,et al.  Bark and ERB bilinear transforms , 1999, IEEE Trans. Speech Audio Process..

[44]  B C Moore,et al.  Comparison of different forms of compression using wearable digital hearing aids. , 1999, The Journal of the Acoustical Society of America.

[45]  Yund Ew,et al.  The effect of multichannel compression on vowel and stop-consonant discrimination in normal-hearing and hearing-impaired subjects. , 1995 .

[46]  C M Reed,et al.  Hearing aids--a review of past research on linear amplification, amplitude compression, and frequency lowering. , 1979, ASHA monographs.

[47]  L D Braida,et al.  Multiband compression limiting for hearing-impaired listeners. , 1987, Journal of rehabilitation research and development.

[48]  J M Kates,et al.  On using coherence to measure distortion in hearing aids. , 1992, The Journal of the Acoustical Society of America.

[49]  R Plomp,et al.  The negative effect of amplitude compression in multichannel hearing aids in the light of the modulation-transfer function. , 1988, The Journal of the Acoustical Society of America.

[50]  James M. Kates,et al.  Multichannel Dynamic-Range Compression Using Digital Frequency Warping , 2005, EURASIP J. Adv. Signal Process..

[51]  E Villchur,et al.  Signal processing to improve speech intelligibility in perceptive deafness. , 1973, The Journal of the Acoustical Society of America.

[52]  Carolyn R. Bertozzi,et al.  Methods and Applications , 2009 .