On the almost everywhere properties of the kernel regression estimate

The regression m(x)=E{Y|X=x} is estimated by the kernel regression estimate % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGTbGbambaaa% a!3888!\[\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over m} \](x) calculated from a sequence (X(1, Y1), ..., (Xn, Yn) of independent identically distributed random vectors from Rd×R. The second order asymptotic expansions for E% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGTbGbambaaa% a!3888!\[\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over m} \](x) and var % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGTbGbambaaa% a!3888!\[\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over m} \](x)} are derived. The expansions hold for almost all (μ) x∈Rd, μ is the probability measure of X. No smoothing conditions on μ and m are imposed. As a result, the asymptotic distribution-free normality for a stochastic component of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGTbGbambaaa% a!3888!\[\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over m} \](x)} is established. Also some bandwidth-selection rule is suggested and bias adjustment is proposed.

[1]  T. Broadbent Measure and Integral , 1957, Nature.

[2]  E. Nadaraya On Estimating Regression , 1964 .

[3]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[4]  H. Rosenthal On the subspaces ofLp(p>2) spanned by sequences of independent random variables , 1970 .

[5]  Eugene F. Schuster,et al.  Joint Asymptotic Distribution of the Estimated Regression Function at a Finite Number of Distinct Points , 1972 .

[6]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[7]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[8]  A. Zygmund,et al.  Measure and integral : an introduction to real analysis , 1977 .

[9]  L. Devroye,et al.  Distribution-Free Consistency Results in Nonparametric Discrimination and Regression Function Estimation , 1980 .

[10]  C. Spiegelman,et al.  Consistent Window Estimation in Nonparametric Regression , 1980 .

[11]  Y. Mack,et al.  Local Properties of k-NN Regression Estimates , 1981 .

[12]  L. Devroye On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates , 1981 .

[13]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[14]  Prakasa Rao Nonparametric functional estimation , 1983 .

[15]  Peter Hall,et al.  Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function , 1984 .

[16]  Adam Krzyzak,et al.  Distribution-free consistency of a nonparametric kernel regression estimate and classification , 1984, IEEE Trans. Inf. Theory.

[17]  W. Stute Asymptotic Normality of Nearest Neighbor Regression Function Estimates , 1984 .

[18]  C. vanEeden,et al.  Mean integrated squared error of kernel estimators when the density and its derivative are not necessarily continuous , 1984 .

[19]  Constance Van Eeden,et al.  Mean integrated squared error of kernel estimators when the density and its derivative are not necessarily continuous , 1985 .

[20]  A. Krzyżak,et al.  Distribution-Free Pointwise Consistency of Kernel Regression Estimate , 1984 .

[21]  Gérard Collomb,et al.  Nonparametric regression: An up–to–date bibliography , 1985 .

[22]  W. Greblicki,et al.  Fourier and Hermite series estimates of regression functions , 1985 .

[23]  W. Härdle,et al.  Optimal Bandwidth Selection in Nonparametric Regression Function Estimation , 1985 .

[24]  Hans-Georg Müller,et al.  Adaptive nonparametric estimation of a multivariate regression function , 1987 .

[25]  W. Greblicki,et al.  Necessary and sufficient consistency conditions for a recursive kernel regression estimate , 1987 .

[26]  A. Krzyżak,et al.  The pointwise rate of convergence of the kernel regression estimate , 1987 .

[27]  Matt P. Wand,et al.  Minimizing L 1 distance in nonparametric density estimation , 1988 .

[28]  A. Tsybakov,et al.  Robust nonparametric regression with simultaneous scale curve estimation , 1988 .

[29]  Matt P. Wand,et al.  On the minimization of absolute distance in kernel density estimation , 1988 .

[30]  Wolfgang Härdle,et al.  Strong uniform consistency rates for estimators of conditional functionals , 1988 .

[31]  On the Choice of the Bandwidth in Kernel Nonparametric Regression , 1988 .