Propositional Logic of Imperfect Information: Foundations and Applications

I will show that the semantic structure of a new imperfectinformation propositional logic can be described in terms of extensive forms of semantic games. I will discuss some ensuing properties of these games such as imperfect recall, informational consistency, and team playing. Finally, I will suggest a couple of applications that arise in physics, and most notably in quantum theory and quantum logics.

[1]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[2]  Ken Binmore,et al.  A Note On Imperfect Recall , 1997 .

[3]  B. Moldovanu,et al.  Understanding Strategic Interaction: Essays in Honor of Reinhard Selten , 2011 .

[4]  R. Hughes,et al.  The Structure and Interpretation of Quantum Mechanics , 1989 .

[5]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[6]  Mark Steedman,et al.  In handbook of logic and language , 1997 .

[7]  A. Pietarinen,et al.  Games in philosophical logic , 1999 .

[8]  Gary M. Hardegree,et al.  Charting the Labyrinth of Quantum Logics: A Progress Report , 1981 .

[9]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[10]  J. Hintikka The Principles of Mathematics Revisited: Introduction , 1996 .

[11]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[12]  J. R. Isbell 3. FINITARY GAMES , 1958 .

[13]  Andreas Boukas,et al.  Quantum Formulation of Classical Two Person Zero-Sum Games , 2000 .

[14]  J. Hintikka,et al.  Game-Theoretical Semantics , 1997 .

[15]  H. Kuhn Classics in Game Theory , 1997 .

[16]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[17]  Ahti-Veikko Pietarinen,et al.  Partiality and Games: Propositional Logic , 2001, Log. J. IGPL.

[18]  Ariel Rubinstein,et al.  On the Interpretation of Decision Problems with Imperfect Recall , 1996, TARK.

[19]  R. H. Strotz Myopia and Inconsistency in Dynamic Utility Maximization , 1955 .

[20]  Gabriel Sandu,et al.  On the logic of informational independence and its applications , 1993, J. Philos. Log..

[21]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[22]  Ahti-Veikko Pietarinen,et al.  Quantum Logic and Quantum Theory in a Game-Theoretic Perspective , 2002, Open Syst. Inf. Dyn..

[23]  D. Koller,et al.  The complexity of two-person zero-sum games in extensive form , 1992 .

[24]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[25]  Y. Ho,et al.  Value of information in two-team zero-sum problems , 1974 .

[26]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[27]  Jeffrey Bub,et al.  Interpreting the Quantum World , 1997 .

[28]  Hilary Putnam Is Logic Empirical , 1969 .

[29]  P. Frank,et al.  Boston Studies in the Philosophy of Science , 1968 .

[30]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[31]  E. Lehrer Repeated Games with Stationary Bounded Recall Strategies , 1988 .

[32]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[33]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[34]  David Deutsch,et al.  Machines, logic and quantum physics , 2000, Bull. Symb. Log..