Materials challenges for trapped-ion quantum computers

Trapped-ion quantum information processors store information in atomic ions maintained in position in free space via electric fields. Quantum logic is enacted via manipulation of the ions' internal and shared motional quantum states using optical and microwave signals. While trapped ions show great promise for quantum-enhanced computation, sensing, and communication, materials research is needed to design traps that allow for improved performance by means of integration of system components, including optics and electronics for ion-qubit control, while minimizing the near-ubiquitous electric-field noise produced by trap-electrode surfaces. In this review, we consider the materials requirements for such integrated systems, with a focus on problems that hinder current progress toward practical quantum computation. We give suggestions for how materials scientists and trapped-ion technologists can work together to develop materials-based integration and noise-mitigation strategies to enable the next generation of trapped-ion quantum computers.

[1]  I. L. Chuang,et al.  Chip-Integrated Voltage Sources for Control of Trapped Ions , 2019, Physical Review Applied.

[2]  D M Lucas,et al.  High-fidelity readout of trapped-ion qubits. , 2008, Physical review letters.

[3]  J. Halbritter,et al.  XPS and AES studies on oxide growth and oxide coatings on niobium , 1980 .

[4]  D. P. Pappas,et al.  Electric-field noise from carbon-adatom diffusion on a Au(110) surface: First-principles calculations and experiments , 2016, 1610.01079.

[5]  P. Schindler,et al.  Engineering vibrationally-assisted energy transfer in a trapped-ion quantum simulator , 2017, 1709.04064.

[6]  Isaac L. Chuang,et al.  Transparent ion trap with integrated photodetector , 2012, 1212.1443.

[7]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[8]  D. Hayes,et al.  Quantum control of qubits and atomic motion using ultrafast laser pulses , 2013, 1307.0557.

[9]  D Schuster,et al.  Cryogenic ion trapping systems with surface-electrode traps. , 2008, The Review of scientific instruments.

[10]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[11]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical Review Letters.

[12]  R. Butler,et al.  Measles and rubella elimination in the WHO Region for Europe: progress and challenges. , 2017, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[13]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[14]  Michal Lipson,et al.  Nanophotonic lithium niobate electro-optic modulators. , 2017, Optics express.

[15]  D M Lucas,et al.  Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning , 2011, 1110.1486.

[16]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[17]  R. Ozeri,et al.  The trapped-ion qubit tool box , 2011, 1106.1190.

[18]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[19]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[20]  D. M. Lucas,et al.  A microfabricated ion trap with integrated microwave circuitry , 2012, 1210.3272.

[21]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[22]  K. Brown,et al.  Reduction of anomalous heating in an in-situ-cleaned ion trap , 2011, 1112.5419.

[23]  J Mizrahi,et al.  Ultrafast gates for single atomic qubits. , 2010, Physical review letters.

[24]  Umesh K. Mishra,et al.  GaN-Based RF Power Devices and Amplifiers , 2008, Proceedings of the IEEE.

[25]  Seokjun Hong,et al.  Engineering of microfabricated ion traps and integration of advanced on-chip features , 2019, 1908.00267.

[26]  Classical squeezing of an oscillator for subthermal noise operation. , 1995, Physical review letters.

[27]  Hinds,et al.  Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. , 1992, Physical review letters.

[28]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[29]  Integrated optical control and enhanced coherence of ion qubits via multi-wavelength photonics , 2020, 2001.05052.

[30]  V. Verma,et al.  State Readout of a Trapped Ion Qubit Using a Trap-Integrated Superconducting Photon Detector. , 2020, Physical review letters.

[31]  T. Schaetz,et al.  Trapped Ion Architecture for Multi‐Dimensional Quantum Simulations , 2020, Advanced Quantum Technologies.

[32]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[33]  Roel Baets,et al.  Open-Access Silicon Photonics: Current Status and Emerging Initiatives , 2018, Proceedings of the IEEE.

[34]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[35]  Rajeev J Ram,et al.  Integrated optical addressing of an ion qubit. , 2015, Nature nanotechnology.

[36]  Rajeev J Ram,et al.  Low-loss integrated photonics for the blue and ultraviolet regime , 2018, APL Photonics.

[37]  Kenneth Brown,et al.  Transport implementation of the Bernstein–Vazirani algorithm with ion qubits , 2016, 1603.05672.

[38]  Peter Lukas Wilhelm Maunz,et al.  High Optical Access Trap 2.0. , 2016 .

[39]  G. Lo,et al.  Aluminum nitride electro-optic phase shifter for backend integration on silicon. , 2016, Optics express.

[40]  A. C. Wilson,et al.  Trapped-Ion Spin-Motion Coupling with Microwaves and a Near-Motional Oscillating Magnetic Field Gradient. , 2018, Physical review letters.

[41]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[42]  F. Schmidt-Kaler,et al.  Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation , 2017, 1705.02771.

[43]  J. Chiaverini,et al.  Distance scaling of electric-field noise in a surface-electrode ion trap , 2018 .

[44]  D. Leibfried,et al.  Quantum amplification of mechanical oscillator motion , 2018, Science.

[45]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[46]  J. Britton,et al.  Scalable arrays of rf Paul traps in degenerate Si , 2009, 0908.1591.

[47]  Chi Zhang,et al.  Integrated optical multi-ion quantum logic. , 2020, Nature.

[48]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[49]  A S Sørensen,et al.  Heisenberg-limited atom clocks based on entangled qubits. , 2013, Physical review letters.

[50]  P. W. Hess,et al.  Observation of a discrete time crystal , 2016, Nature.

[51]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1990 .

[52]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[53]  Wineland,et al.  Ionic crystals in a linear Paul trap. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[54]  J. Chiaverini,et al.  Method for determination of technical noise contributions to ion motional heating , 2018, Journal of Applied Physics.

[55]  H. Häffner,et al.  Electric-field noise from thermally activated fluctuators in a surface ion trap , 2018, Physical Review A.

[56]  D. Leibfried,et al.  Measurements of trapped-ion heating rates with exchangeable surfaces in close proximity , 2017, 1701.04814.

[57]  Alexander Korneev,et al.  Quantum detection by current carrying superconducting film , 2001 .

[58]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[59]  Emanuel Knill,et al.  Quantum gate teleportation between separated qubits in a trapped-ion processor , 2019, Science.

[60]  Dmitri Maslov,et al.  Ground-state energy estimation of the water molecule on a trapped ion quantum computer , 2019, ArXiv.

[61]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[62]  A Retzker,et al.  Trapped-Ion Quantum Logic with Global Radiation Fields. , 2016, Physical review letters.

[63]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[64]  J. Chiaverini,et al.  Evidence for multiple mechanisms underlying surface electric-field noise in ion traps , 2018, Physical Review A.

[65]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[66]  I. Chuang,et al.  Finite-geometry models of electric field noise from patch potentials in ion traps , 2011, 1109.2995.

[67]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[68]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[69]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[70]  D. M. Lucas,et al.  High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions , 2014, 1406.5473.

[71]  C. Figgatt,et al.  Demonstration of the QCCD trapped-ion quantum computer architecture , 2020, 2003.01293.

[72]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[73]  H. Ball,et al.  Site-resolved imaging of beryllium ion crystals in a high-optical-access Penning trap with inbore optomechanics. , 2018, The Review of scientific instruments.

[74]  Mile Gu,et al.  Single ion qubit with estimated coherence time exceeding one hour , 2021, Nature communications.

[75]  Sae Woo Nam,et al.  High-speed low-crosstalk detection of a 171Yb+ qubit using superconducting nanowire single photon detectors , 2019, Communications Physics.

[76]  R. Blatt,et al.  Electric-field noise above a thin dielectric layer on metal electrodes , 2015, 1511.00624.

[77]  C. Xiong,et al.  Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics , 2012, 1210.0975.

[78]  T. Harty,et al.  High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves. , 2016, Physical review letters.

[79]  K. Brown,et al.  100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. , 2012, Physical review letters.

[80]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[81]  T. Monz,et al.  Realization of a scalable Shor algorithm , 2015, Science.

[82]  J. Chiaverini,et al.  Integrated multi-wavelength control of an ion qubit , 2020, Nature.

[83]  B. Rubenstein,et al.  van der Waals-corrected density functional study of electric field noise heating in ion traps caused by electrode surface adsorbates , 2018, New Journal of Physics.

[84]  V. Negnevitsky,et al.  Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register , 2018, Nature.

[85]  P.-A. Besse,et al.  Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology , 2003 .

[86]  J. Chiaverini,et al.  Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range , 2013, 1310.4385.

[87]  Curtis Volin,et al.  In-vacuum active electronics for microfabricated ion traps. , 2014, The Review of scientific instruments.

[88]  Jonathan P. Home,et al.  Scalable Arrays of Micro-Penning Traps for Quantum Computing and Simulation , 2020 .

[89]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[90]  R. Blatt,et al.  Ion-trap measurements of electric-field noise near surfaces , 2014, 1409.6572.

[91]  Hui Yang,et al.  On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[92]  P. Rabl,et al.  Microscopic model of electric-field-noise heating in ion traps , 2011, 1106.1949.

[93]  Rajeev J Ram,et al.  Versatile Silicon Nitride and Alumina Integrated Photonic Platforms for the Ultraviolet to Short-Wave Infrared , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[94]  Daniel F. V. James,et al.  Proposal for a scalable universal bosonic simulator using individually trapped ions , 2012, 1205.1717.

[95]  Jeremy Sage,et al.  Reduction of trapped ion anomalous heating by in situ surface plasma cleaning , 2015 .

[96]  P. Rabl,et al.  Influence of monolayer contamination on electric-field-noise heating in ion traps , 2012, 1210.0044.

[97]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[98]  P. Zoller,et al.  Dissipative quantum error correction and application to quantum sensing with trapped ions , 2017, Nature Communications.

[99]  C.A.T. Salama,et al.  Modeling and characterization of CMOS-compatible high-voltage device structures , 1987, IEEE Transactions on Electron Devices.

[100]  Erick Ulin-Avila,et al.  Surface noise analysis using a single-ion sensor , 2014 .

[101]  Andrew M. Steane,et al.  Electrode configurations for fast separation of trapped ions , 2004, Quantum Inf. Comput..

[102]  J M Amini,et al.  Trapped-ion quantum logic gates based on oscillating magnetic fields. , 2008, Physical review letters.

[103]  Isaac L. Chuang,et al.  Demonstration of a scalable, multiplexed ion trap for quantum information processing , 2009, Quantum Inf. Comput..

[104]  I. V. Inlek,et al.  Modular entanglement of atomic qubits using photons and phonons , 2014, Nature Physics.

[105]  J. Britton,et al.  A microfabricated surface-electrode ion trap in silicon , 2006 .

[106]  A. Katzir,et al.  Chirped gratings in integrated optics , 1977 .

[107]  P. Drmota,et al.  High-Rate, High-Fidelity Entanglement of Qubits Across an Elementary Quantum Network. , 2020, Physical review letters.

[108]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[109]  H. Häffner,et al.  Distance scaling and polarization of electric-field noise in a surface ion trap , 2019, Physical Review A.

[110]  Christoph Becher,et al.  High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion , 2017, Nature Communications.

[111]  Yuang Wang,et al.  Realization of Translational Symmetry in Trapped Cold Ion Rings. , 2016, Physical review letters.

[112]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[113]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[114]  D. Leibfried,et al.  UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. , 2016, Optics express.

[115]  T. Coudreau,et al.  Electric field noise above surfaces: A model for heating rate scaling law in ion traps , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[116]  W. Hensinger,et al.  On the application of radio frequency voltages to ion traps via helical resonators , 2011, 1106.5013.

[117]  L. Ioffe,et al.  Anomalous charge noise in superconducting qubits , 2019, Physical Review B.

[118]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[119]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[120]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[121]  V. Shalaev,et al.  1 Supplementary Information : Low loss Plasmon-assisted electro-optic modulator , 2018 .

[122]  J. Johnson Thermal Agitation of Electricity in Conductors , 1927, Nature.

[123]  Anna Keselman,et al.  High-fidelity state detection and tomography of a single-ion Zeeman qubit , 2011, 1103.5253.

[124]  Karl Berggren,et al.  Superconducting microfabricated ion traps , 2010, 1010.6108.

[125]  A. Kraft,et al.  Measuring Anomalous Heating in a Planar Ion Trap with Variable Ion-Surface Separation. , 2017, Physical review letters.

[126]  M. L. Wall,et al.  Quantum spin dynamics and entanglement generation with hundreds of trapped ions , 2015, Science.

[127]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[128]  J. P. Home,et al.  Realization of a programmable two-qubit quantum processor , 2009, 0908.3031.

[129]  P. Zoller,et al.  A Tutorial on Quantum Error Correction , 2007 .

[130]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1990, Conference on Precision Electromagnetic Measurements.

[131]  Tzvetan S. Metodi,et al.  Resource requirements for fault-tolerant quantum simulation: The ground state of the transverse Ising model , 2009 .

[132]  C. Ospelkaus,et al.  Measurement of Ultralow Heating Rates of a Single Antiproton in a Cryogenic Penning Trap. , 2019, Physical review letters.

[133]  G. Stutter,et al.  Resolved-Sideband Laser Cooling in a Penning Trap. , 2014, Physical review letters.

[134]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.