Recent developments in organic redox flow batteries: A critical review

[1]  Tianshou Zhao,et al.  High-performance zinc bromine flow battery via improved design of electrolyte and electrode , 2017 .

[2]  Akeel A. Shah,et al.  Cyclohexanedione as the negative electrode reaction for aqueous organic redox flow batteries , 2017 .

[3]  S. Zakeeruddin,et al.  Redox Catalysis for Improved Counter‐Electrode Kinetics in Dye‐Sensitized Solar Cells , 2017 .

[4]  Frank C. Walsh,et al.  Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage , 2017 .

[5]  T. Zhao,et al.  In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries , 2017 .

[6]  Yutao Li,et al.  A high-performance all-metallocene-based, non-aqueous redox flow battery , 2017 .

[7]  L. Zeng,et al.  Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries , 2017 .

[8]  M. R. Mohamed,et al.  Membrane-less hybrid flow battery based on low-cost elements , 2017 .

[9]  Haomin Chen,et al.  Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries , 2017, Nature Communications.

[10]  M. Anderson,et al.  Membrane-less organic-inorganic aqueous flow batteries with improved cell potential. , 2016, Chemical communications.

[11]  Yu Ding,et al.  Exploring Bio-inspired Quinone-Based Organic Redox Flow Batteries: A Combined Experimental and Computational Study , 2016 .

[12]  Ulrich S. Schubert,et al.  Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials , 2016, Angewandte Chemie.

[13]  Peng-Fei Li,et al.  The rise of organic electrode materials for energy storage. , 2016, Chemical Society reviews.

[14]  Fikile R. Brushett,et al.  High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries , 2016 .

[15]  Fikile R. Brushett,et al.  Cost-driven materials selection criteria for redox flow battery electrolytes , 2016 .

[16]  Xuelong Zhou,et al.  A low-cost iron-cadmium redox flow battery for large-scale energy storage , 2016 .

[17]  T. Zhao,et al.  Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries , 2016 .

[18]  David M. Reed,et al.  A High-Current, Stable Nonaqueous Organic Redox Flow Battery , 2016 .

[19]  Michael G. Verde,et al.  A biomimetic redox flow battery based on flavin mononucleotide , 2016, Nature Communications.

[20]  Young‐Kyu Han,et al.  Computational screening of organic molecules as redox active species in redox flow batteries , 2016 .

[21]  Fikile R. Brushett,et al.  Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries , 2016 .

[22]  Qing Wang,et al.  Redox-Mediated ORR and OER Reactions: Redox Flow Lithium Oxygen Batteries Enabled with a Pair of Soluble Redox Catalysts , 2016 .

[23]  Fikile R. Brushett,et al.  Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries , 2016 .

[24]  H. Girault,et al.  Ion transfer battery: storing energy by transferring ions across liquid-liquid interfaces. , 2016, Chemical communications.

[25]  Alán Aspuru-Guzik,et al.  A redox-flow battery with an alloxazine-based organic electrolyte , 2016, Nature Energy.

[26]  U. Schubert,et al.  Poly(boron-dipyrromethene)—A Redox-Active Polymer Class for Polymer Redox-Flow Batteries , 2016 .

[27]  Fikile R. Brushett,et al.  Tuning the Stability of Organic Active Materials for Nonaqueous Redox Flow Batteries via Reversible, Electrochemically Mediated Li+ Coordination , 2016 .

[28]  M. R. Mohamed,et al.  Evaluation of electrode materials for all-copper hybrid flow batteries , 2016 .

[29]  Qizhao Huang,et al.  High-Energy Density Redox Flow Lithium Battery with Unprecedented Voltage Efficiency , 2016 .

[30]  A. Vassallo,et al.  The influence of ionic liquid additives on zinc half-cell electrochemical performance in zinc/bromine flow batteries , 2016 .

[31]  Qing Wang,et al.  A redox flow lithium battery based on the redox targeting reactions between LiFePO4 and iodide , 2016 .

[32]  Wei Wang,et al.  Energy storage: Redox flow batteries go organic. , 2016, Nature chemistry.

[33]  Fikile R. Brushett,et al.  A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR , 2016 .

[34]  Martin D Hager,et al.  Poly(TEMPO)/Zinc Hybrid‐Flow Battery: A Novel, “Green,” High Voltage, and Safe Energy Storage System , 2016, Advanced materials.

[35]  Ulrich S. Schubert,et al.  Polymer/Zinc Hybrid-Flow Battery Using Block Copolymer Micelles featuring a TEMPO Corona as Catholyte , 2016 .

[36]  Wei Wang,et al.  A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4‐HO‐TEMPO Catholyte , 2016 .

[37]  Shu Zhang,et al.  An Organic Electroactive Material for Flow Batteries , 2016 .

[38]  J. Lee,et al.  The Application of Redox Targeting Principles to the Design of Rechargeable Li–S Flow Batteries , 2015 .

[39]  Ke Gong,et al.  Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs , 2015, Energy & Environmental Science.

[40]  Youngmi Kim,et al.  Tailoring the Solid-State Fluorescence Emission of BODIPY Dyes by meso Substitution. , 2015, Chemistry.

[41]  Yutao Li,et al.  A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. , 2015, Chemical Society reviews.

[42]  Feng Pan,et al.  Redox Species of Redox Flow Batteries: A Review , 2015, Molecules.

[43]  Qing Wang,et al.  High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane , 2015, Science Advances.

[44]  Joaquín Rodríguez-López,et al.  Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries. , 2015, Journal of the American Chemical Society.

[45]  U. Schubert,et al.  An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials , 2015, Nature.

[46]  Fikile R. Brushett,et al.  Voltammetry study of quinoxaline in aqueous electrolytes , 2015 .

[47]  Jens Noack,et al.  The Chemistry of Redox‐Flow Batteries , 2015 .

[48]  W. Dehaen,et al.  Postfunctionalization of the BODIPY Core: Synthesis and Spectroscopy , 2015 .

[49]  Kyoung-Hee Shin,et al.  Electrochemical properties of a non-aqueous redox battery with all-organic redox couples , 2015 .

[50]  Roy G. Gordon,et al.  Alkaline quinone flow battery , 2015, Science.

[51]  G. Soloveichik Flow Batteries: Current Status and Trends. , 2015, Chemical reviews.

[52]  S. Flores,et al.  Bio-Inspired Electroactive Organic Molecules for Aqueous Redox Flow Batteries. 1. Thiophenoquinones , 2015 .

[53]  K. Kikuchi,et al.  BODIPY‐Based Probes for the Fluorescence Imaging of Biomolecules in Living Cells , 2015 .

[54]  Youhong Tang,et al.  Three‐Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction , 2015 .

[55]  Qian Xu,et al.  Fundamental models for flow batteries , 2015 .

[56]  Bin Li,et al.  Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. , 2015, Angewandte Chemie.

[57]  Xin Li Modeling and simulation study of a metal free organic–inorganic aqueous flow battery with flow through electrode , 2015 .

[58]  K. Kikuchi,et al.  BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. , 2015, Chemical Society reviews.

[59]  Simon Parkinson,et al.  Long-term energy planning with uncertain environmental performance metrics , 2015 .

[60]  Qing Wang,et al.  Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery. , 2015, Chemical communications.

[61]  Nicolas E. Holubowitch,et al.  A Highly Soluble Organic Catholyte for Non‐Aqueous Redox Flow Batteries , 2015 .

[62]  Kensuke Takechi,et al.  A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries , 2015, Advanced materials.

[63]  Anthony K. Burrell,et al.  Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries , 2015 .

[64]  Qizhao Huang,et al.  Next‐Generation, High‐Energy‐Density Redox Flow Batteries , 2015 .

[65]  Mohd Rusllim Mohamed,et al.  A Mixed Acid Based Vanadium–cerium Redox Flow Battery with a Zero-gap Serpentine Architecture , 2015 .

[66]  Yi-Chun Lu,et al.  Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries , 2015, Nature Communications.

[67]  Lei Cheng,et al.  Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening. , 2015, The journal of physical chemistry letters.

[68]  C. Liang,et al.  Titelbild: Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li+/H+ Exchange in Aqueous Solutions (Angew. Chem. 1/2015) , 2015 .

[69]  Takashi Sukegawa,et al.  Expanding the Dimensionality of Polymers Populated with Organic Robust Radicals toward Flow Cell Application: Synthesis of TEMPO-Crowded Bottlebrush Polymers Using Anionic Polymerization and ROMP , 2014 .

[70]  M. Aleksić,et al.  EVALUATION OF KINETIC PARAMETERS AND REDOX MECHANISM OF QUINOXALINE AT GLASSY CARBON ELECTRODE , 2014 .

[71]  S. Singh,et al.  Evolution of BODIPY Dyes as Potential Sensitizers for Dye-Sensitized Solar Cells , 2014 .

[72]  Lelia Cosimbescu,et al.  TEMPO‐Based Catholyte for High‐Energy Density Nonaqueous Redox Flow Batteries , 2014, Advanced materials.

[73]  Michael P. Marshak,et al.  Computational design of molecules for an all-quinone redox flow battery , 2014, Chemical science.

[74]  Kyoung-Hee Shin,et al.  A metal-free and all-organic redox flow battery with polythiophene as the electroactive species , 2014 .

[75]  Corrine F. Elliott,et al.  3,7-Bis(trifluoromethyl)-N-ethylphenothiazine: a redox shuttle with extensive overcharge protection in lithium-ion batteries , 2014 .

[76]  Gang Li,et al.  Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte. , 2014, Angewandte Chemie.

[77]  Qing Wang,et al.  Redox Targeting of Anatase TiO2 for Redox Flow Lithium‐Ion Batteries , 2014 .

[78]  ハスキンソン,ブライアン,et al.  Quinone and hydroquinone-based flow battery , 2014 .

[79]  Kevin G. Gallagher,et al.  Pathways to Low Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries , 2014 .

[80]  G. Soloveichik,et al.  Liquid fuel cells , 2014, Beilstein journal of nanotechnology.

[81]  Daniel Rueda García,et al.  Design of new electroactive fluids for redox flow batteries based on quinones. , 2014 .

[82]  Stefano Passerini,et al.  ZnFe2O4-C/LiFePO4-CNT: A Novel High-Power Lithium-Ion Battery with Excellent Cycling Performance , 2014, Advanced energy materials.

[83]  Gareth H McKinley,et al.  Polysulfide flow batteries enabled by percolating nanoscale conductor networks. , 2014, Nano letters.

[84]  M. H. Chakrabarti,et al.  Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries , 2014 .

[85]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[86]  D. Choi,et al.  Multi-electron redox reaction of an organic radical cathode induced by a mesopore carbon network with nitroxide polymers. , 2013, Physical chemistry chemical physics : PCCP.

[87]  이승주,et al.  Method for preparing electrolyte for vanadium redox flow battery using vanadium oxide , 2013 .

[88]  Ki Tae Nam,et al.  Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. , 2013, Angewandte Chemie.

[89]  M. Skyllas-Kazacos,et al.  Review of material research and development for vanadium redox flow battery applications , 2013 .

[90]  H. Gasteiger,et al.  Stability of superoxide radicals in glyme solvents for non-aqueous Li-O2 battery electrolytes. , 2013, Physical chemistry chemical physics : PCCP.

[91]  Seung-Hyeon Moon,et al.  A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective , 2013 .

[92]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[93]  P. Modiba,et al.  Kinetics study of transition metal complexes (Ce–DTPA, Cr–DTPA and V–DTPA) for redox flow battery applications , 2013 .

[94]  Xianfeng Li,et al.  Vanadium Flow Battery for Energy Storage: Prospects and Challenges. , 2013, The journal of physical chemistry letters.

[95]  Ji‐Guang Zhang,et al.  Effects of Electrolyte Salts on the Performance of Li–O2 Batteries , 2013 .

[96]  Michael Grätzel,et al.  Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. , 2013, Physical chemistry chemical physics : PCCP.

[97]  Ulrich S. Schubert,et al.  Powering up the Future: Radical Polymers for Battery Applications , 2012, Advanced materials.

[98]  Fikile R. Brushett,et al.  An All‐Organic Non‐aqueous Lithium‐Ion Redox Flow Battery , 2012 .

[99]  Victor S. Batista,et al.  Fuel selection for a regenerative organic fuel cell/flow battery: thermodynamic considerations , 2012 .

[100]  C. Low,et al.  Progress in redox flow batteries, remaining challenges and their applications in energy storage , 2012 .

[101]  Gareth Kear,et al.  Development of the all‐vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects , 2012 .

[102]  Lu Zhang,et al.  Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection , 2012 .

[103]  Lelia Cosimbescu,et al.  Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery. , 2012, Chemical communications.

[104]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[105]  Qinghua Liu,et al.  Dramatic performance gains in vanadium redox flow batteries through modified cell architecture , 2012 .

[106]  M. S. Hossain,et al.  Organocatalytic Dakin oxidation by nucleophilic flavin catalysts. , 2012, Organic letters.

[107]  H. Sakaebe,et al.  A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries , 2011 .

[108]  M. Fraaije,et al.  Turning a riboflavin-binding protein into a self-sufficient monooxygenase by cofactor redesign. , 2011, Chemical communications.

[109]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[110]  Min‐Sik Park,et al.  Development of metal-based electrodes for non-aqueous redox flow batteries , 2011 .

[111]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[112]  C. Ponce de León,et al.  An undivided zinc–cerium redox flow battery operating at room temperature (295 K) , 2011 .

[113]  Frank C. Walsh,et al.  Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery , 2011 .

[114]  M. H. Chakrabarti,et al.  Ruthenium based redox flow battery for solar energy storage , 2011 .

[115]  Charles W. Monroe,et al.  Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries , 2011 .

[116]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[117]  J. Baek,et al.  Novel quinoxaline-based organic sensitizers for dye-sensitized solar cells. , 2011, Organic Letters.

[118]  Charles W. Monroe,et al.  Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries , 2011 .

[119]  Frank C. Walsh,et al.  Characterization of a zinc–cerium flow battery , 2011 .

[120]  Hyoyoung Lee,et al.  Nitronyl nitroxide radicals as organic memory elements with both n- and p-type properties. , 2011, Angewandte Chemie.

[121]  G. Graff,et al.  A Stable Vanadium Redox‐Flow Battery with High Energy Density for Large‐Scale Energy Storage , 2011 .

[122]  Huamin Zhang,et al.  Ion exchange membranes for vanadium redox flow battery (VRB) applications , 2011 .

[123]  M H Osman,et al.  Recent progress and continuing challenges in bio-fuel cells. Part I: enzymatic cells. , 2011, Biosensors & bioelectronics.

[124]  K. Oyaizu,et al.  p‐ and n‐Type Bipolar Redox‐Active Radical Polymer: Toward Totally Organic Polymer‐Based Rechargeable Devices with Variable Configuration , 2011, Advanced materials.

[125]  C. Low,et al.  Ce(III)/Ce(IV) in methanesulfonic acid as the positive half cell of a redox flow battery , 2011 .

[126]  K. Oyaizu,et al.  Synthesis and charge transport properties of redox-active nitroxide polyethers with large site density , 2010 .

[127]  P. Rossky,et al.  Dependence of electrochemical and electrogenerated chemiluminescence properties on the structure of BODIPY dyes. Unusually large separation between sequential electron transfers. , 2010, Journal of the American Chemical Society.

[128]  R. Compton,et al.  The electrochemical reduction of 1,4-benzoquinone in 1-ethyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)-imide, [C2mim][NTf2]: A voltammetric study of the comproportionation between benzoquinone and the benzoquinone dianion , 2010 .

[129]  Lu Zhang,et al.  Understanding the redox shuttle stability of 3,5-di-tert-butyl-1,2-dimethoxybenzene for overcharge protection of lithium-ion batteries , 2010 .

[130]  Hiroyuki Nishide,et al.  Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: expanding the functional horizon of polyimides , 2010 .

[131]  Petr Novák,et al.  Synthesis of A Novel Spirobisnitroxide Polymer and its Evaluation in an Organic Radical Battery , 2010 .

[132]  J. Chambers Electrochemistry of quinones , 2010 .

[133]  Charles W. Monroe,et al.  Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries , 2009 .

[134]  Kenichiroh Koshika,et al.  Environmentally benign batteries based on organic radical polymers , 2009 .

[135]  Khalil Amine,et al.  Redox shuttles for safer lithium-ion batteries , 2009 .

[136]  G. Shi,et al.  Conducting polymer nanomaterials: electrosynthesis and applications. , 2009, Chemical Society reviews.

[137]  J. Haw,et al.  Low band-gap polymers based on quinoxaline derivatives and fused thiophene as donor materials for high efficiency bulk-heterojunction photovoltaic cells , 2009 .

[138]  Gaoping Cao,et al.  Study on a single flow acid Cd–chloranil battery , 2009 .

[139]  Hiroyuki Nishide,et al.  Emerging N‐Type Redox‐Active Radical Polymer for a Totally Organic Polymer‐Based Rechargeable Battery , 2009 .

[140]  Jeff Dahn,et al.  High-Potential Redox Shuttle for Use in Lithium-Ion Batteries , 2009 .

[141]  Toru Katsumata,et al.  Helical polyacetylenes carrying 2,2,6,6‐tetramethyl‐1‐piperidinyloxy and 2,2,5,5‐tetramethyl‐1‐pyrrolidinyloxy moieties: Their synthesis, properties, and function , 2007 .

[142]  Diane K. Smith,et al.  Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. , 2007, Journal of the American Chemical Society.

[143]  Hiroyuki Nishide,et al.  Cathode- and Anode-Active Poly(nitroxylstyrene)s for Rechargeable Batteries: p- and n-Type Redox Switching via Substituent Effects , 2007 .

[144]  Jiro Iriyama,et al.  High-rate capable organic radical cathodes for lithium rechargeable batteries , 2007 .

[145]  Qing Wang,et al.  Redox targeting of insulating electrode materials: a new approach to high-energy-density batteries. , 2006, Angewandte Chemie.

[146]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[147]  Yusheng Yang,et al.  A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application , 2006 .

[148]  Mikael P. Johansson,et al.  Efficient and selective sulfoxidation by hydrogen peroxide, using a recyclable flavin--[BMIm]PF6 catalytic system. , 2006, The Journal of organic chemistry.

[149]  Shigeyuki Iwasa,et al.  Organic radical battery: nitroxide polymers as a cathode-active material , 2004 .

[150]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[151]  R. Wills,et al.  A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) , 2004 .

[152]  Ch. Fabjan,et al.  Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems , 2004 .

[153]  Chulheung Bae,et al.  Chromium redox couples for application to redox flow batteries , 2002 .

[154]  Hajimu Yamana,et al.  Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery , 2002 .

[155]  Shigeyuki Iwasa,et al.  Rechargeable batteries with organic radical cathodes , 2002 .

[156]  C. Giacomelli,et al.  Electrochemistry of Caffeic Acid Aqueous Solutions with pH 2.0 to 8.5 , 2002 .

[157]  A. Price,et al.  A novel approach to utility scale energy storage [regenerative fuel cells] , 1999 .

[158]  Roger J. Mortimer,et al.  Organic electrochromic materials , 1999 .

[159]  J. Yamaki,et al.  Electrolyte for high voltage Li/LiMn1.9Co0.1O4 cells , 1997 .

[160]  Keiji Kobayashi,et al.  Magnetic properties of nitronyl nitroxide radicals substituted in phenylboronic acid the BOH ⃛O hydrogen bond as a constituent unit of a one‐dimensional suprastructure exhibiting a ferromagnetic spin interaction , 1997 .

[161]  W. Śliwa,et al.  Chemistry of Viologens , 1991 .

[162]  Elton J. Cairns,et al.  The Secondary Alkaline Zinc Electrode , 1991 .

[163]  K. Abraham,et al.  n‐Butylferrocene for Overcharge Protection of Secondary Lithium Batteries , 1990 .

[164]  A. Murthy,et al.  Fe(III)/Fe(II): ligand systems for use as negative half-cells in redox-flow cells , 1989 .

[165]  E. Cepeda,et al.  Solubility of anthracene and anthraquinone in some pure and mixed solvents , 1989 .

[166]  M. Morita,et al.  A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte , 1988 .

[167]  N. Kitamura,et al.  The role of intramolecular association in the electrochemical reduction of viologen dimers and trimers , 1988 .

[168]  N. Kitamura,et al.  Substituent effects on electrochemical reduction of viologen dimer and trimer with ethylene spacer , 1988 .

[169]  R. Becker,et al.  Aqueous Redox Transition Metal Complexes for Electrochemical Applications as a Function of pH , 1987 .

[170]  K. Stutts,et al.  The lithium salt of benzoquinone radical anion and voltammetric anomalies , 1987 .

[171]  Maria Skyllas-Kazacos,et al.  Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery , 1985 .

[172]  T. Nagaoka,et al.  Ion-pair effects on the electroreduction of carbonyl compounds in N,-Dimethylformamide , 1982 .

[173]  C. L. Bird,et al.  Electrochemistry of the viologens , 1981 .

[174]  A. Bard,et al.  Solution Redox Couples for Electrochemical Energy Storage I . Iron (III)‐Iron (II) Complexes with O‐Phenanthroline and Related Ligands , 1981 .

[175]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[176]  R. C. Knechtli,et al.  Zinc‐Bromine Secondary Battery , 1977 .

[177]  R. Adams,et al.  Anodic oxidation pathways of phenolic compounds , 1972 .

[178]  H. Binder,et al.  Investigation into the use of quinone compounds-for battery cathodes , 1972 .

[179]  D. W. Leedy,et al.  Cathodic reduction of phthalimide systems in nonaqueous solutions , 1971 .

[180]  A. R. Forrester,et al.  Stable Nitroxide Radicals , 1964, Nature.

[181]  R. L. Flurry,et al.  The Polarographic Reduction of Some Aryl Diketones , 1964 .

[182]  M. P. Strier,et al.  The Polarography of Quinoxaline1 , 1957 .

[183]  L. Fieser THE TAUTOMERISM OF HYDROXY QUINONES , 1928 .

[184]  L. Fieser,et al.  AN ELECTROCHEMICAL STUDY OF THE REVERSIBLE REDUCTION OF ORGANIC COMPOUNDS1 , 1922 .

[185]  M. L. Crossley THE SEPARATION OF MONO-β-, 2,6- AND 2,7-SULFONIC ACIDS OF ANTHRAQUINONE. , 1915 .

[186]  Qian Xu,et al.  The applications and prospect of fuel cells in medical field: A review , 2017 .

[187]  James R. McKone,et al.  On the Benefits of a Symmetric Redox Flow Battery , 2016 .

[188]  S. Narayanan,et al.  High-Performance Aqueous Organic Flow Battery with Quinone-Based Redox Couples at Both Electrodes , 2016 .

[189]  M. Aziz,et al.  A Quinone-Bromide Flow Battery with 1 W/cm2 Power Density , 2016 .

[190]  Kevin G. Gallagher,et al.  Transport Property Requirements for Flow Battery Separators , 2016 .

[191]  A. Vassallo,et al.  The Zinc/Bromine Flow Battery , 2016 .

[192]  D. N. Buckley,et al.  Electrode Kinetics of Vanadium Flow Batteries: Contrasting Responses of VII-VIII and VIV-VV to Electrochemical Pretreatment of Carbon , 2016 .

[193]  Jeffrey S. Moore,et al.  An Investigation of the Ionic Conductivity and Species Crossover of Lithiated Nafion 117 in Nonaqueous Electrolytes , 2016 .

[194]  Jun Liu,et al.  Towards High‐Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species , 2015 .

[195]  Mohd Herwan Sulaiman,et al.  Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system , 2015 .

[196]  Fang Wang,et al.  An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples , 2014 .

[197]  Nicholas S. Hudak,et al.  Application of Redox Non‐Innocent Ligands to Non‐Aqueous Flow Battery Electrolytes , 2014 .

[198]  A. Vlad,et al.  Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes. , 2014, Macromolecular rapid communications.

[199]  Jeffrey A. Kowalski,et al.  Electrolyte Development for Non-Aqueous Redox Flow Batteries Using a High-Throughput Screening Platform , 2014 .

[200]  Piergiorgio Alotto,et al.  Redox flow batteries for the storage of renewable energy: A review , 2014 .

[201]  Brian Huskinson,et al.  Benzoquinone-Hydroquinone Couple for Flow Battery , 2013 .

[202]  J. Rolland,et al.  Synthesis of nitroxide-containing block copolymers for the formation of organic cathodes , 2013 .

[203]  Seok-Gwang Doo,et al.  Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2′-bipyridine) Complex Electrolyte , 2012 .

[204]  Dong Fang,et al.  Electrochemical Properties of an All-Organic Redox Flow Battery Using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide , 2011 .

[205]  Walter J. Riker A Review of J , 2010 .

[206]  Gaoping Cao,et al.  A study of tiron in aqueous solutions for redox flow battery application , 2010 .

[207]  Ming Li,et al.  A Novel Coordination Polymer as Positive Electrode Material for Lithium Ion Battery , 2008 .

[208]  M. H. Chakrabarti,et al.  Evaluation of electrolytes for redox flow battery applications , 2007 .

[209]  Derek Pletcher,et al.  A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part II. Flow cell studies , 2004 .

[210]  Der-Tau Chin,et al.  Electrochemical Overcharge Protection of Rechargeable Lithium Batteries I . Kinetics of Iodide/Tri‐Iodide/Iodine Redox Reactions on Platinum in Solutions , 1988 .

[211]  Der-Tau Chin,et al.  Electrochemical overcharge protection of rechargeable lithium batteries: I. Kinetics of iodide/tri-iodide/iodine redox reactions on platinum in LiAsF/sub 6//tetrahydrofuran solutions , 1988 .

[212]  E. M. Thurman,et al.  Organic Geochemistry of Natural Waters , 1985, Developments in Biogeochemistry.

[213]  S. I. Bailey,et al.  The construction and use of potential–pH diagrams in organic oxidation–reduction reactions , 1983 .

[214]  A. Poisson,et al.  Conductivity/salinity/temperature relationship of diluted and concentrated standard seawater , 1980 .

[215]  N. H. Hagedorn,et al.  Redox storage systems for solar applications , 1980 .

[216]  J. Hale,et al.  Reduction of p-quinones at a dropping mercury electrode , 1963 .

[217]  E. Biilmann Oxidation and reduction potentials of organic compounds , 1924 .