Detection Model in Collaborative Multi-Robot Monte Carlo Localization.
暂无分享,去创建一个
L.M. Bergasa | M. Ocana | E. Lopez | R. Barea | S. Alvarez | R. Barea | M. Ocaña | S. Alvarez | E. López | L. Bergasa
[1] Wolfram Burgard,et al. Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).
[2] Liqiang Feng,et al. Navigating Mobile Robots: Systems and Techniques , 1996 .
[3] Ingemar J. Cox,et al. Modeling a Dynamic Environment Using a Bayesian Multiple Hypothesis Approach , 1994, Artif. Intell..
[4] Wolfram Burgard,et al. Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.
[5] Luis Miguel Bergasa,et al. A Navigation System for Assistant Robots Using Visually Augmented POMDPs , 2005, Auton. Robots.
[6] Wolfram Burgard,et al. Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..
[7] Wolfram Burgard,et al. A Probabilistic Approach to Collaborative Multi-Robot Localization , 2000, Auton. Robots.
[8] W. Burgard,et al. Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..
[9] Wolfram Burgard,et al. Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..