Values of Brownian intersection exponents, II: Plane exponents
暂无分享,去创建一个
[1] N. Madras,et al. THE SELF-AVOIDING WALK , 2006 .
[2] B. Duplantier. RANDOM WALKS AND QUANTUM GRAVITY IN TWO DIMENSIONS , 1998 .
[3] Wendelin Werner,et al. Values of Brownian intersection exponents III: Two-sided exponents , 2002 .
[4] R. Azencott. Behavior of diffusion semi-groups at infinity , 1974 .
[5] Path Crossing Exponents and the External Perimeter in 2D Percolation , 1999, cond-mat/9901018.
[6] Saleur,et al. Exact determination of the percolation hull exponent in two dimensions. , 1987, Physical review letters.
[7] Harmonic Measure Exponents for Two-Dimensional Percolation , 1999, cond-mat/9901008.
[8] R. Kenyon. Long-range properties of spanning trees , 2000 .
[9] G. Lawler. Hausdorff Dimension of Cut Points for Brownian Motion , 1996 .
[10] Karl Löwner. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I , 1923 .
[11] TWO-DIMENSIONAL COPOLYMERS AND EXACT CONFORMAL MULTIFRACTALITY , 1998, cond-mat/9812439.
[12] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[13] Analyticity of intersection exponents for planar Brownian motion , 2000, math/0005295.
[14] G. Lawler. The Dimension of the Frontier of Planar Brownian Motion , 1996 .
[15] John Cardy. LETTER TO THE EDITOR: The number of incipient spanning clusters in two-dimensional percolation , 1997 .
[16] Richard Kenyon,et al. The asymptotic determinant of the discrete Laplacian , 2000, math-ph/0011042.
[17] Robin Pemantle,et al. The Dimension of the Brownian Frontier Is Greater Than 1 , 1995 .
[18] J. Cardy,et al. Conformal Invariance and Surface Critical Behavior , 1984 .
[19] C. Pommerenke. On the Loewner differential equation. , 1966 .
[20] G. Lawler,et al. Non-intersection exponents for Brownian paths , 1990 .
[21] M. Cranston,et al. An extension of a result of Burdzy and Lawler , 1991 .
[22] Oded Schramm,et al. Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.
[23] Bounds for Disconnection Exponents , 1996 .
[24] G. Lawler. Strict concavity of the intersection exponent for Brownian motion in two and three dimensions. , 1998 .
[25] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[26] G. Lawler,et al. Universality for conformally invariant intersection exponents , 2000 .
[27] Wendelin Werner,et al. Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .
[28] Gregory F. Lawler,et al. The Intersection Exponent for Simple Random Walk , 2000, Combinatorics, Probability and Computing.
[29] Bernard Nienhuis,et al. Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas , 1984 .
[30] John Cardy. Critical percolation in finite geometries , 1992 .
[31] L. Ahlfors. Conformal Invariants: Topics in Geometric Function Theory , 1973 .
[32] G. Lawler,et al. Intersection Exponents for Planar Brownian Motion , 1999 .
[33] Richard Kenyon,et al. Conformal invariance of domino tiling , 1999 .
[34] G. Lawler. Cut Times for Simple Random Walk , 1996 .
[35] Sharp Estimates for Brownian Non-intersection Probabilities , 2001, math/0101247.