Gamma oscillations in the entorhinal-hippocampal circuit underlying memory and dementia

[1]  B. Winblad,et al.  APP mouse models for Alzheimer's disease preclinical studies , 2017, The EMBO journal.

[2]  Kei M. Igarashi,et al.  Impaired In Vivo Gamma Oscillations in the Medial Entorhinal Cortex of Knock-in Alzheimer Model , 2017, Front. Syst. Neurosci..

[3]  Suhasa B. Kodandaramaiah,et al.  Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields , 2017, Cell.

[4]  P. Frankland,et al.  Entorhinal Cortical Deep Brain Stimulation Rescues Memory Deficits in Both Young and Old Mice Genetically Engineered to Model Alzheimer’s Disease , 2017, Neuropsychopharmacology.

[5]  Laura Lee Colgin,et al.  Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer's disease , 2017, Hippocampus.

[6]  M. Rasch,et al.  A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning , 2017, Nature Neuroscience.

[7]  Geoffrey M. Barrett,et al.  Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction, and Spatial Memory Deficits Reminiscent of Early Alzheimer’s Disease , 2017, Neuron.

[8]  E. Boyden,et al.  Gamma frequency entrainment attenuates amyloid load and modifies microglia , 2016, Nature.

[9]  José R. Donoso,et al.  Early Cortical Changes in Gamma Oscillations in Alzheimer’s Disease , 2016, Front. Syst. Neurosci..

[10]  Jeannie-Marie S. Leoutsakos,et al.  A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer’s Disease , 2016, Journal of Alzheimer's disease : JAD.

[11]  Mattias P. Karlsson,et al.  Apolipoprotein E4 Causes Age-Dependent Disruption of Slow Gamma Oscillations during Hippocampal Sharp-Wave Ripples , 2016, Neuron.

[12]  F. Helmchen,et al.  Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex , 2016, Nature Neuroscience.

[13]  Dheeraj S. Roy,et al.  Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease , 2016, Nature.

[14]  Jonathan T. Brown,et al.  Electrical and Network Neuronal Properties Are Preferentially Disrupted in Dorsal, But Not Ventral, Medial Entorhinal Cortex in a Mouse Model of Tauopathy , 2016, The Journal of Neuroscience.

[15]  N. Mons,et al.  Altered hippocampal information coding and network synchrony in APP-PS1 mice , 2015, Neurobiology of Aging.

[16]  Kei M. Igarashi Plasticity in oscillatory coupling between hippocampus and cortex , 2015, Current Opinion in Neurobiology.

[17]  A. Gillespie,et al.  Apolipoprotein E4 Produced in GABAergic Interneurons Causes Learning and Memory Deficits in Mice , 2014, The Journal of Neuroscience.

[18]  D. Ji,et al.  Impairments in experience‐dependent scaling and stability of hippocampal place fields limit spatial learning in a mouse model of Alzheimer's disease , 2014, Hippocampus.

[19]  T. Bonhoeffer,et al.  Grid cells and cortical representation , 2014, Nature Reviews Neuroscience.

[20]  Kei M. Igarashi,et al.  Coordination of entorhinal–hippocampal ensemble activity during associative learning , 2014, Nature.

[21]  S. Itohara,et al.  Single App knock-in mouse models of Alzheimer's disease , 2014, Nature Neuroscience.

[22]  Stefano Panzeri,et al.  Modelling and analysis of local field potentials for studying the function of cortical circuits , 2013, Nature Reviews Neuroscience.

[23]  Jesse Jackson,et al.  Alterations in hippocampal network oscillations and theta–gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer's disease , 2013, The European journal of neuroscience.

[24]  M. Moser,et al.  Traces of Experience in the Lateral Entorhinal Cortex , 2013, Current Biology.

[25]  Nick C Fox,et al.  Clinical and biomarker changes in dominantly inherited Alzheimer's disease. , 2012, The New England journal of medicine.

[26]  Margaret F. Carr,et al.  Transient Slow Gamma Synchrony Underlies Hippocampal Memory Replay , 2012, Neuron.

[27]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[28]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[29]  Edward O. Mann,et al.  Inhibitory Interneuron Deficit Links Altered Network Activity and Cognitive Dysfunction in Alzheimer Model , 2012, Cell.

[30]  Sachin S. Deshmukh,et al.  Representation of Non-Spatial and Spatial Information in the Lateral Entorhinal Cortex , 2011, Front. Behav. Neurosci..

[31]  R. Wennberg,et al.  A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease , 2010, Annals of neurology.

[32]  J. Fell,et al.  Cross-frequency coupling supports multi-item working memory in the human hippocampus , 2010, Proceedings of the National Academy of Sciences.

[33]  Adriano B. L. Tort,et al.  Theta–gamma coupling increases during the learning of item–context associations , 2009, Proceedings of the National Academy of Sciences.

[34]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[35]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[36]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[37]  Thomas J. Wills,et al.  Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model , 2008, Proceedings of the National Academy of Sciences.

[38]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[39]  M. Moser,et al.  Spatial Memory in the Rat Requires the Dorsolateral Band of the Entorhinal Cortex , 2005, Neuron.

[40]  R. Morris,et al.  Glutamate-receptor-mediated encoding and retrieval of paired-associate learning , 2003, Nature.

[41]  M. Witter,et al.  Anatomical Organization of the Parahippocampal‐Hippocampal Network , 2000, Annals of the New York Academy of Sciences.

[42]  G. Buzsáki,et al.  Gamma Oscillations in the Entorhinal Cortex of the Freely Behaving Rat , 1998, The Journal of Neuroscience.

[43]  J. Morris,et al.  Profound Loss of Layer II Entorhinal Cortex Neurons Occurs in Very Mild Alzheimer’s Disease , 1996, The Journal of Neuroscience.

[44]  J E Lisman,et al.  Storage of 7 +/- 2 short-term memories in oscillatory subcycles , 1995, Science.

[45]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  M. Deschenes,et al.  Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. , 1993, Journal of neurophysiology.

[47]  G. V. Van Hoesen,et al.  Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. , 1984, Science.

[48]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[49]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[50]  J. Fell,et al.  Phase/amplitude reset and theta–gamma interaction in the human medial temporal lobe during a continuous word recognition memory task , 2005, Hippocampus.

[51]  J. Lisman The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme , 2005, Hippocampus.

[52]  B T Hyman,et al.  Entorhinal cortex pathology in Alzheimer's disease , 1991, Hippocampus.