Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data

Abstract. The objective of this research is to test Sentinel-1 SAR multitemporal data, supported by multispectral and SAR data at other wavelengths, for fine-scale mapping of above-ground biomass (AGB) at the provincial level in a Mediterranean forested landscape. The regression results indicate good accuracy of prediction (R2=0.7) using integrated sensors when an upper bound of 400  Mg ha−1 is used in modeling. Multitemporal SAR information was relevant, allowing the selection of optimal Sentinel-1 data, as broadleaf forests showed a different response in backscatter throughout the year. Similar accuracy in predictions was obtained when using SAR multifrequency data or joint SAR and optical data. Predictions based on SAR data were more conservative, and in line with those from an independent sample from the National Forest Inventory, than those based on joint data types. The potential of S1 data in predicting AGB can possibly be improved if models are developed per specific groups (deciduous or evergreen species) or forest types and using a larger range of ground data. Overall, this research shows the usefulness of Sentinel-1 data to map biomass at very high resolution for local study and at considerable carbon density.

[1]  Heiko Balzter,et al.  Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar , 2016, Remote. Sens..

[2]  Janet E. Nichol,et al.  Forest Biomass Estimation Using Texture Measurements of High-Resolution Dual-Polarization C-Band SAR Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Maurizio Santoro,et al.  Multitemporal repeat pass SAR interferometry of boreal forests , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Priyakant Sinha,et al.  Review of the use of remote sensing for biomass estimation to support renewable energy generation , 2015 .

[5]  Timo Karjalainen,et al.  Carbon inventory methods and carbon mitigation potentials of forests in Europe: a short review of recent progress , 2007, European Journal of Forest Research.

[6]  Sandra Englhart,et al.  Aboveground biomass retrieval in tropical forests — The potential of combined X- and L-band SAR data use , 2011 .

[7]  Mathias Schardt,et al.  EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements , 2010 .

[8]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[9]  Urs Wegmüller,et al.  Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements , 2011 .

[10]  Sassan Saatchi,et al.  Coherent effects in microwave backscattering models for forest canopies , 1997, IEEE Trans. Geosci. Remote. Sens..

[11]  Thuy Le Toan,et al.  Multitemporal ERS SAR analysis applied to forest mapping , 2000, IEEE Trans. Geosci. Remote. Sens..

[12]  K. Ranson,et al.  An evaluation of AIRSAR and SIR-C/X-SAR images for mapping northern forest attributes in Maine, USA , 1997 .

[13]  H. Balzter,et al.  Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry , 2007 .

[14]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[15]  João Roberto dos Santos,et al.  Eucalyptus Biomass and Volume Estimation Using Interferometric and Polarimetric SAR Data , 2010, Remote. Sens..

[16]  Christiane Schmullius,et al.  Aboveground biomass estimation using SAR-optical (Lidar, RapidEye) and field inventory datasets in Skukuza, Kruger National Park in South Africa , 2015 .

[17]  C. Schmullius,et al.  Carbon stock and density of northern boreal and temperate forests , 2014 .

[18]  Saroj Maity,et al.  Monitoring and retrieval of vegetation parameter using multi-frequency polarimetric SAR data , 2011, 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[19]  Piermaria Corona,et al.  Forest ecosystem inventory and monitoring as a framework for terrestrial natural renewable resource survey programmes , 2002 .

[20]  R. De Lauretis,et al.  An approach to estimate carbon stocks change in forest carbon pools under the UNFCCC: the Italian case , 2008 .

[21]  Piermaria Corona,et al.  European Forest Types and Forest Europe SFM indicators: Tools for monitoring progress on forest biodiversity conservation , 2014 .

[22]  James Barber,et al.  Red edge measurements for remotely sensing plant chlorophyll content , 1983 .

[23]  Pietro Guccione,et al.  Assessment of seasonal variations of radar backscattering coefficient using sentinel-1 data , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[24]  P. Atkinson,et al.  Relating SAR image texture to the biomass of regenerating tropical forests , 2005 .

[25]  Meng Zhao,et al.  Regional Mapping of Plantation Extent Using Multisensor Imagery , 2016, Remote. Sens..

[26]  Edward T. A. Mitchard,et al.  Fusing radar and optical remote sensing for biomass prediction in mountainous tropical forests , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[27]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[28]  G. Baskerville Use of Logarithmic Regression in the Estimation of Plant Biomass , 1972 .

[29]  Zhenfeng Shao,et al.  Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China , 2016, Sensors.

[30]  Piermaria Corona,et al.  Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems. , 2016, Environmental research.

[31]  Claudia Notarnicola,et al.  Potential of ALOS2 and NDVI to Estimate Forest Above-Ground Biomass, and Comparison with Lidar-Derived Estimates , 2016, Remote. Sens..

[32]  Onisimo Mutanga,et al.  High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[33]  João V. Siqueira,et al.  Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation , 2016, Nature.

[34]  Thuy Le Toan,et al.  Decrease of L-band SAR backscatter with biomass of dense forests , 2015 .

[35]  F. Fassnacht,et al.  Potential of TerraSAR-X and Sentinel 1 Imagery to Map Deforested Areas and Derive Degradation Status in Complex Rain Forests of Ecuador , 2017, International Forestry Review.

[36]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[37]  A. Skidmore,et al.  Narrow band vegetation indices overcome the saturation problem in biomass estimation , 2004 .

[38]  Robert Mavsar,et al.  Assessing impacts of intensified biomass production and biodiversity protection on ecosystem services provided by European forests. , 2014 .

[39]  Lijuan Liu,et al.  Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[40]  M. Lefsky,et al.  Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud , 2012 .

[41]  R. Fournier,et al.  A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland , 2006 .

[42]  Gherardo Chirici,et al.  Combination of optical and LiDAR satellite imagery with forest inventory data to improve wall-to-wall assessment of growing stock in Italy , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[43]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[44]  Guoqing Sun,et al.  Sensitivity of multi-source SAR backscatter to changes of forest aboveground biomass , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[45]  Martti Hallikainen,et al.  Multitemporal behavior of L- and C-band SAR observations of boreal forests , 1999, IEEE Trans. Geosci. Remote. Sens..

[46]  Kaj Andersson,et al.  A new methodology for the estimation of biomass of coniferdominated boreal forest using NOAA AVHRR data , 1997 .

[47]  Sassan Saatchi,et al.  Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests , 2016, Remote. Sens..

[48]  Terje Gobakken,et al.  Estimating spruce and pine biomass with interferometric X-band SAR , 2010 .

[49]  Yrjö Rauste,et al.  Multi-temporal JERS SAR data in boreal forest biomass mapping , 2005 .

[50]  Frédéric Achard,et al.  The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests , 2016, Remote. Sens..

[51]  G. Mallinis,et al.  Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem , 2017 .

[52]  R. Valentini,et al.  Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data , 2014 .

[53]  M. Rautiainen,et al.  The potential of Sentinel-2 data for estimating biophysical variables in a boreal forest: a simulation study , 2016 .

[54]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[55]  Na Yin,et al.  Estimating Forest Aboveground Biomass by Combining ALOS PALSAR and WorldView-2 Data: A Case Study at Purple Mountain National Park, Nanjing, China , 2014, Remote. Sens..

[56]  Md. Latifur Rahman Sarker,et al.  Forest biomass estimation from the fusion of C-band SAR and optical data using wavelet transform , 2013, Remote Sensing.

[57]  C. Castellani,et al.  Inventario forestale nazionale italiano. Tavole di cubatura a doppia entrata , 1984 .

[58]  Anna Barbati,et al.  Concept to Practice of Geospatial-Information Tools to Assist Forest Management and Planning under Precision Forestry Framework: a review , 2017 .

[59]  Iain H. Woodhouse,et al.  Vertical backscatter profile of forests predicted by a macroecological plant model , 2013 .

[60]  John A. Richards,et al.  The effect of changing environmental conditions on microwave signatures of forest ecosystems - Preliminary results of the March 1988 Alaskan aircraft SAR experiment , 1990 .

[61]  Malcolm Davidson,et al.  Forest classification and impact of BIOMASS resolution on forest area and aboveground biomass estimation , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[62]  R. Valentini,et al.  Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data , 2016 .

[63]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[64]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[65]  L. S. Araujo,et al.  TROPICAL FOREST BIOMASS MAPPING FROM DUAL FREQUENCY SAR INTERFEROMETRY ( X AND P-BANDS ) , 2004 .

[66]  M. Vastaranta,et al.  Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects , 2015 .

[67]  Simonetta Paloscia,et al.  The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass , 1997, IEEE Trans. Geosci. Remote. Sens..

[68]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[69]  Karen E. Joyce,et al.  Estimating Mangrove Biophysical Variables Using WorldView-2 Satellite Data: Rapid Creek, Northern Territory, Australia , 2016, J. Imaging.

[70]  Maxim Shoshany,et al.  Mediterranean shrublands biomass estimation using Sentinel-1 and Sentinel-2 , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[71]  Masahiko Nagai,et al.  Above Ground Biomass Assessment from Combined Optical and SAR Remote Sensing Data in Surat Thani Province, Thailand , 2016 .

[72]  I. Woodhouse,et al.  Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the Mediterranean ecosystem , 2017 .

[73]  W. Cohen,et al.  Estimating forest aboveground biomass by low density lidar data in mixed broad-leaved forests in the Italian Pre-Alps , 2015, Forest Ecosystems.

[74]  J. Kong,et al.  Retrieval of forest biomass from SAR data , 1994 .

[75]  Mahendra Singh Nathawat,et al.  A review of radar remote sensing for biomass estimation , 2015, International Journal of Environmental Science and Technology.