Alternative prey impedes the efficacy of a natural enemy of mosquitoes

[1]  Ross N. Cuthbert,et al.  Using functional responses to quantify notonectid predatory impacts across increasingly complex environments , 2019, Acta Oecologica.

[2]  Ross N. Cuthbert,et al.  The Effect of the Alternative Prey, Paramecium caudatum (Peniculida: Parameciidae), on the Predation of Culex pipiens (Diptera: Culicidae) by the Copepods Macrocyclops albidus and Megacyclops viridis (Cyclopoida: Cyclopidae) , 2018, Journal of Medical Entomology.

[3]  Ross N. Cuthbert,et al.  Resistance is futile: lack of predator switching and a preference for native prey predict the success of an invasive prey species , 2018, Royal Society Open Science.

[4]  P. Froneman,et al.  Sacrificial males: the potential role of copulation and predation in contributing to copepod sex‐skewed ratios , 2018 .

[5]  Ross N. Cuthbert,et al.  Biological control agent selection under environmental change using functional responses, abundances and fecundities; the Relative Control Potential (RCP) metric , 2018, Biological Control.

[6]  Helene C. Bovy,et al.  frair: an R package for fitting and comparing consumer functional responses , 2017 .

[7]  Colin J. Carlson,et al.  Global expansion and redistribution of Aedes-borne virus transmission risk with climate change , 2017, bioRxiv.

[8]  Meng Xu,et al.  Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species , 2017, Journal of Applied Ecology.

[9]  P. Froneman,et al.  Trophic interactions in an austral temperate ephemeral pond inferred using stable isotope analysis , 2016, Hydrobiologia.

[10]  Daniel Barrios-O'Neill,et al.  Emergent effects of structural complexity and temperature on predator–prey interactions , 2016 .

[11]  M. J. Hatcher,et al.  Predicting invasive species impacts: a community module functional response approach reveals context dependencies , 2014, The Journal of animal ecology.

[12]  G. Zanotti,et al.  Effect of Habitat Complexity on the Predation of Buenoa fuscipennis (Heteroptera: Notonectidae) on Mosquito Immature Stages and Alternative Prey , 2013, Journal of vector ecology : journal of the Society for Vector Ecology.

[13]  Lena M. Lorenz,et al.  Biological and Environmental Control of Disease Vectors , 2013 .

[14]  D. Boukal,et al.  Who Eats Whom in a Pool? A Comparative Study of Prey Selectivity by Predatory Aquatic Insects , 2012, PloS one.

[15]  Travis Ingram,et al.  Stability and persistence of food webs with omnivory: Is there a general pattern? , 2012 .

[16]  H. Ratte,et al.  Diurnal and nocturnal functional response of juvenile Notonecta maculata considered as a consequence of shifting predation behaviour , 2010, Behavioural Processes.

[17]  A. Zeileis,et al.  Beta Regression in R , 2010 .

[18]  D. Canyon,et al.  Aquatic insect predators and mosquito control. , 2009, Tropical biomedicine.

[19]  Kevin D. Lafferty,et al.  The ecology of climate change and infectious diseases , 2009 .

[20]  R. Seymour,et al.  Haemoglobin as a buoyancy regulator and oxygen supply in the backswimmer (Notonectidae, Anisops) , 2008, Journal of Experimental Biology.

[21]  Ram Kumar,et al.  Potential of three aquatic predators to control mosquitoes in the presence of alternative prey: a comparative experimental assessment , 2008 .

[22]  Benjamin M. Bolker,et al.  Ecological Models and Data in R , 2008 .

[23]  O. Schmitz,et al.  Predator diversity and trophic interactions. , 2007, Ecology.

[24]  K S McCann,et al.  The dynamics of spatially coupled food webs. , 2005, Ecology letters.

[25]  L. Blaustein,et al.  INDIVIDUAL AND INTERACTIVE EFFECTS OF A PREDATOR AND CONTROPHIC SPECIES ON MOSQUITO POPULATIONS , 2005 .

[26]  V. S. Nam,et al.  New strategy against Aedes aegypti in Vietnam , 2005, The Lancet.

[27]  J. J. Gilbert,et al.  Predation by Buenoa macrotibialis (Insecta, Hemiptera) on zooplankton: effect of light on selection and consumption of prey , 2003 .

[28]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[29]  Vlastimil Křivan,et al.  CONNECTING THEORETICAL AND EMPIRICAL STUDIES OF TRAIT‐MEDIATED INTERACTIONS , 2003 .

[30]  S. Peacor,et al.  A REVIEW OF TRAIT-MEDIATED INDIRECT INTERACTIONS IN ECOLOGICAL COMMUNITIES , 2003 .

[31]  Øyvind Langsrud,et al.  ANOVA for unbalanced data: Use Type II instead of Type III sums of squares , 2003, Stat. Comput..

[32]  P. J. Lester,et al.  Functional and numerical responses do not always indicate the most effective predator for biological control: an analysis of two predators in a two‐prey system , 2002 .

[33]  Jonathan M. Jeschke,et al.  PREDATOR FUNCTIONAL RESPONSES: DISCRIMINATING BETWEEN HANDLING AND DIGESTING PREY , 2002 .

[34]  P. J. Lester,et al.  Pyrethroid encapsulation for conservation of acarine predators and reduced spider mite (Acari : Tetranychidae) outbreaks in apple orchards , 1999 .

[35]  B. León Influence of the predatory backswimmer, Notonecta maculata, on invertebrate community structure , 1998 .

[36]  Daniel Simberloff,et al.  Ecological Effects of an Insect Introduced for the Biological Control of Weeds , 1997 .

[37]  Daniel Simberloff,et al.  How Risky is Biological Control , 1996 .

[38]  J. Chesson The Effect of Alternative Prey on the Functional Response of Notonecta Hoffmani , 1989 .

[39]  Joseph Travis,et al.  How can the functional reponse best be determined? , 1988, Oecologia.

[40]  A. Frutiger The ecology of aquatic insects , 1984, Schweizerische Zeitschrift für Hydrologie.

[41]  Jean Chesson,et al.  The Estimation and Analysis of Preference and Its Relatioship to Foraging Models , 1983 .

[42]  W. Murdoch,et al.  Selective predation by the backswimmer, Notonecta1 , 1983 .

[43]  R. Paine Food webs : linkage, interaction strength and community infrastructure , 1980 .

[44]  M. Hassell,et al.  The dynamics of arthropod predator-prey systems. , 1979, Monographs in population biology.

[45]  B. Manly A Model for Certain Types of Selection Experiments , 1974 .

[46]  R. May,et al.  STABILITY IN INSECT HOST-PARASITE MODELS , 1973 .

[47]  Joseph H. Connell,et al.  Community Interactions on Marine Rocky Intertidal Shores , 1972 .

[48]  D. Rogers,et al.  Random search and insect population models , 1972 .

[49]  W. Murdoch Switching in General Predators: Experiments on Predator Specificity and Stability of Prey Populations , 1969 .

[50]  R. G. Stross,et al.  Diapause Induction in Daphnia Requires Two Stimuli , 1965, Science.

[51]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[52]  Daniel Barrios-O'Neill,et al.  Using functional responses to assess predator hatching phenology implications for pioneering prey in arid temporary pools , 2016 .

[53]  Sophia Decker,et al.  Design And Analysis Of Ecological Experiments , 2016 .

[54]  J. Vogel,et al.  Model Selection And Multimodel Inference , 2016 .

[55]  Achim Zeileis,et al.  Diagnostic Checking in Regression Relationships , 2015 .

[56]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[57]  L. De Meester,et al.  Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment , 2004, Hydrobiologia.

[58]  Joseph Travis,et al.  How can the functional response best be determined? , 2004, Oecologia.

[59]  G. Polis,et al.  THE ECOLOGY AND EVOLUTION OF INTRAGUILD PREDATION: Potential Competitors That Eat Each Other , 1989 .

[60]  Mark A. McPeek,et al.  Predation, Competition, and Prey Communities: A Review of Field Experiments , 1985 .

[61]  W. Murdoch,et al.  Predation and Population Stability , 1975 .