Properties of Rank Metric Codes

This paper investigates general properties of codes with the rank metric. We first investigate asymptotic packing properties of rank metric codes. Then, we study sphere covering properties of rank metric codes, derive bounds on their parameters, and investigate their asymptotic covering properties. Finally, we establish several identities that relate the rank weight distribution of a linear code to that of its dual code. One of our identities is the counterpart of the MacWilliams identity for the Hamming metric, and it has a different form from the identity by Delsarte.

[1]  N. J. A. Sloane,et al.  Further results on the covering radius of codes , 1986, IEEE Trans. Inf. Theory.

[2]  Maximilien Gadouleau,et al.  Decoder Error Probability of MRD Codes , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[3]  Simon Plass,et al.  Fast decoding of rank-codes with rank errors and column erasures , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[4]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[5]  R. Blahut Theory and practice of error control codes , 1983 .

[6]  Ernst M. Gabidulin,et al.  Ideals over a Non-Commutative Ring and thier Applications in Cryptology , 1991, EUROCRYPT.

[7]  Gerhard J. M. van Wee Bounds on packings and coverings by spheres in q-ary and mixed Hamming spaces , 1991, J. Comb. Theory, Ser. A.

[8]  Moshe Schwartz,et al.  Two-dimensional cluster-correcting codes , 2005, IEEE Transactions on Information Theory.

[9]  U. Sripati,et al.  On the rank distance of cyclic codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[10]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[11]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[12]  Ernst M. Gabidulin,et al.  On subcodes of codes in rank metric , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[13]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[14]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[15]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[16]  W. B. Vasantha,et al.  Multi-covering radii of codes with rank metric , 2002, Proceedings of the IEEE Information Theory Workshop.

[17]  Martin Bossert,et al.  Maximum rank distance codes as space-time codes , 2003, IEEE Trans. Inf. Theory.

[18]  Ron M. Roth,et al.  Probabilistic crisscross error correction , 1997, IEEE Trans. Inf. Theory.

[19]  P. Vijay Kumar,et al.  Rate-diversity tradeoff of space-time codes with fixed alphabet and optimal constructions for PSK modulation , 2003, IEEE Trans. Inf. Theory.

[20]  Ernst M. Gabidulin,et al.  The new construction of rank codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[21]  H. Keng,et al.  A THEOREM ON MATRICES OVER A SFIELD AND ITS APPLICATIONS , 1951 .

[22]  Ernst M. Gabidulin,et al.  Properties of subspace subcodes of optimum codes in rank metric , 2006, ArXiv.

[23]  Philippe Delsarte,et al.  Properties and Applications of the Recurrence $F( {i + 1,k + 1,n + 1} ) = q^{k + 1} F( {i,k + 1,n} ) - q^k F( {i,k,n} )$ , 1976 .

[24]  Maximilien Gadouleau,et al.  Error Performance Analysis of Maximum Rank Distance Codes , 2006, ArXiv.

[25]  Philippe Delsarte,et al.  Four Fundamental Parameters of a Code and Their Combinatorial Significance , 1973, Inf. Control..

[26]  Pierre Loidreau,et al.  A Welch-Berlekamp Like Algorithm for Decoding Gabidulin Codes , 2005, WCC.

[27]  Kefei Chen,et al.  On the Non - Existence of Perfect Codes with Rank Distance , 1996 .

[28]  D. Kleitman On a combinatorial conjecture of Erdös , 1966 .

[29]  Pierre Loidreau,et al.  Properties of codes in rank metric , 2006, ArXiv.

[30]  Maximilien Gadouleau,et al.  GENp1-1: Properties of Codes with the Rank Metric , 2006, IEEE Globecom 2006.

[31]  Gerhard J. M. van Wee,et al.  Improved sphere bounds on the coveting radius of codes , 1988, IEEE Trans. Inf. Theory.

[32]  Thierry P. Berger,et al.  Isometries for rank distance and permutation group of Gabidulin codes , 2003, IEEE Trans. Inf. Theory.

[33]  Jean-Marie Goethals,et al.  Alternating Bilinear Forms over GF(q) , 1975, J. Comb. Theory A.

[34]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.