Nonintersecting subspaces based on finite alphabets

Two subspaces of a vector space are here called "nonintersecting" if they meet only in the zero vector. Motivated by the design of noncoherent multiple-antenna communications systems, we consider the following question. How many pairwise nonintersecting M/sub t/-dimensional subspaces of an m-dimensional vector space V over a field F can be found, if the generator matrices for the subspaces may contain only symbols from a given finite alphabet A/spl sube/F? The most important case is when F is the field of complex numbers C; then M/sub t/ is the number of antennas. If A=F=GF(q) it is shown that the number of nonintersecting subspaces is at most (q/sup m/-1)/(q/sup Mt/-1), and that this bound can be attained if and only if m is divisible by M/sub t/. Furthermore, these subspaces remain nonintersecting when "lifted" to the complex field. It follows that the finite field case is essentially completely solved. In the case when F=C only the case M/sub t/=2 is considered. It is shown that if A is a PSK-configuration, consisting of the 2/sup r/ complex roots of unity, the number of nonintersecting planes is at least 2/sup r(m-2)/ and at most 2/sup r(m-1)-1/ (the lower bound may in fact be the best that can be achieved).

[1]  Thomas L. Marzetta,et al.  Capacity of a Mobile Multiple-Antenna Communication Link in Rayleigh Flat Fading , 1999, IEEE Trans. Inf. Theory.

[2]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[3]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[4]  Brian L. Hughes,et al.  The asymptotic capacity of multiple-antenna Rayleigh-fading channels , 2005, IEEE Transactions on Information Theory.

[5]  Harvey Cohn,et al.  A classical invitation to algebraic numbers and class fields , 1978 .

[6]  Barry Mazur,et al.  Algebraic Numbers By , 2005 .

[7]  Fernando Q. Gouvêa p -adic Numbers , 1993 .

[8]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[9]  Lizhong Zheng,et al.  Communication on the Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel , 2002, IEEE Trans. Inf. Theory.

[10]  Babak Hassibi,et al.  Representation theory for high-rate multiple-antenna code design , 2001, IEEE Trans. Inf. Theory.

[11]  Hamid Jafarkhani,et al.  A differential detection scheme for transmit diversity , 2000, IEEE Journal on Selected Areas in Communications.

[12]  David Tse,et al.  Fundamentals of Wireless Communication: Information theory from first principles , 2005 .

[13]  Bertrand M. Hochwald,et al.  Differential unitary space-time modulation , 2000, IEEE Trans. Commun..

[14]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[15]  Rudolf Lide,et al.  Finite fields , 1983 .

[16]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[17]  Jens Zander,et al.  Principles of Wireless Communications , 2006 .

[18]  R. H. Hardin,et al.  A Group-Theoretic Framework for the Construction of Packings in Grassmannian Spaces , 1999, math/0208002.

[19]  L. Washington Introduction to Cyclotomic Fields , 1982 .

[20]  P. Vijay Kumar,et al.  Rate-diversity tradeoff of space-time codes with fixed alphabet and optimal constructions for PSK modulation , 2003, IEEE Trans. Inf. Theory.

[21]  Thomas L. Marzetta,et al.  Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading , 2000, IEEE Trans. Inf. Theory.

[22]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[23]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[24]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[25]  Edwin Weiss,et al.  Algebraic number theory , 1963 .

[26]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[27]  Martin Bossert,et al.  Maximum rank distance codes as space-time codes , 2003, IEEE Trans. Inf. Theory.

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[30]  Johannes André,et al.  Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe , 1954 .

[31]  Jean-Claude Belfiore,et al.  A new family of Grassmann space-time codes for non-coherent MIMO systems , 2003, IEEE Communications Letters.

[32]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.