Vapnik-Chervonenkis classes of definable sets
暂无分享,去创建一个
[1] J. Lamperti. ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .
[2] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[3] S. Shelah. Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory , 1971 .
[4] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[5] James E. Baumgartner,et al. Almost disjoint sets, the dense set problem and the partition calculus , 1976 .
[6] R. Dudley. Central Limit Theorems for Empirical Measures , 1978 .
[7] Bruno Poizat. Theories Instables , 1981, J. Symb. Log..
[8] Richard M. Dudley,et al. Invariance principles for sums of Banach space valued random elements and empirical processes , 1983 .
[9] R. Dudley. A course on empirical processes , 1984 .
[10] A. Pillay,et al. Definable sets in ordered structures , 1984 .
[11] A. Pillay,et al. DEFINABLE SETS IN ORDERED STRUCTURES. I , 1986 .
[12] L. Dries. A generalization of the Tarski-Seidenberg theorem, and some nondefinability results , 1986 .
[13] E. Bierstone,et al. Semianalytic and subanalytic sets , 1988 .
[14] J. Yukich,et al. Some new Vapnik-Chervonenkis classes , 1989 .