' s personal copy Hybrid biogeography-based evolutionary algorithms

Hybrid evolutionary algorithms (EAs) are effective optimization methods that combine multiple EAs. We propose several hybrid EAs by combining some recently-developed EAs with a biogeography-based hybridization strategy. We test our hybrid EAs on the continuous optimization benchmarks from the 2013 Congress on Evolutionary Computation (CEC) and on some real-world traveling salesman problems. The new hybrid EAs include two approaches to hybridization: (1) iteration-level hybridization, in which various EAs and BBO are executed in sequence; and (2) algorithm-level hybridization, which runs various EAs independently and then exchanges information between them using ideas from biogeography. Our empirical study shows that the new hybrid EAs significantly outperforms their constituent algorithms with the selected tuning parameters and generation limits, and algorithm-level hybridization is generally better than iteration-level hybridization. Results also show that the best new hybrid algorithm in this paper is competitive with the algorithms from the 2013 CEC competition. In addition, we show that the new hybrid EAs are generally robust to tuning parameters. In summary, the contribution of this paper is the introduction of biogeography-based hybridization strategies to the EA community. & 2014 Elsevier Ltd. All rights reserved.

[1]  Lin Lin,et al.  Multiobjective evolutionary algorithm for manufacturing scheduling problems: state-of-the-art survey , 2014, J. Intell. Manuf..

[2]  Francisco Herrera,et al.  Dynamically updated region based memetic algorithm for the 2013 CEC Special Session and Competition on Real Parameter Single Objective Optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[3]  Thomas Stützle,et al.  Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[4]  Janez Brest,et al.  Structured Population Size Reduction Differential Evolution with Multiple Mutation Strategies on CEC 2013 real parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[5]  Ilya Loshchilov,et al.  CMA-ES with restarts for solving CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[6]  Alex S. Fukunaga,et al.  Evaluating the performance of SHADE on CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[7]  Josef Tvrdík,et al.  Competitive differential evolution applied to CEC 2013 problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[8]  István Erlich,et al.  Hybrid Mean-Variance Mapping Optimization for solving the IEEE-CEC 2013 competition problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[9]  Amir Nakib,et al.  An improved biogeography based optimization approach for segmentation of human head CT-scan images employing fuzzy entropy , 2012, Eng. Appl. Artif. Intell..

[10]  Patrick Siarry,et al.  Biogeography-based optimization for constrained optimization problems , 2012, Comput. Oper. Res..

[11]  K. S. Swarup,et al.  Multi-objective biogeography based optimization for optimal PMU placement , 2012, Appl. Soft Comput..

[12]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[13]  Mostafa Zandieh,et al.  A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem , 2012 .

[14]  Dan Simon,et al.  A dynamic system model of biogeography-based optimization , 2011, Appl. Soft Comput..

[15]  Ye Xu,et al.  An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems , 2011, Expert Syst. Appl..

[16]  Dan Simon,et al.  Analysis of migration models of biogeography-based optimization using Markov theory , 2011, Eng. Appl. Artif. Intell..

[17]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[18]  Patrick Siarry,et al.  Two-stage update biogeography-based optimization using differential evolution algorithm (DBBO) , 2011, Comput. Oper. Res..

[19]  Junyan Wang,et al.  Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization , 2011, ICSI.

[20]  Ponnuthurai N. Suganthan,et al.  Real-parameter evolutionary multimodal optimization - A survey of the state-of-the-art , 2011, Swarm Evol. Comput..

[21]  Caroline Prodhon,et al.  A hybrid evolutionary algorithm for the periodic location-routing problem , 2011, Eur. J. Oper. Res..

[22]  Dan Simon,et al.  Blended biogeography-based optimization for constrained optimization , 2011, Eng. Appl. Artif. Intell..

[23]  Dan Simon,et al.  Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms , 2011, Inf. Sci..

[24]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[25]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[26]  Taher Niknam,et al.  A hybrid self-adaptive particle swarm optimization and modified shuffled frog leaping algorithm for distribution feeder reconfiguration , 2010, Eng. Appl. Artif. Intell..

[27]  Haiping Ma,et al.  An analysis of the equilibrium of migration models for biogeography-based optimization , 2010, Inf. Sci..

[28]  Dirk Sudholt,et al.  The benefit of migration in parallel evolutionary algorithms , 2010, GECCO '10.

[29]  Urvinder Singh,et al.  Design of Yagi-Uda Antenna Using Biogeography Based Optimization , 2010, IEEE Transactions on Antennas and Propagation.

[30]  Lifang Xu,et al.  Biogeography migration algorithm for traveling salesman problem , 2010, Int. J. Intell. Comput. Cybern..

[31]  Edward Sazonov,et al.  Hybrid evolutionary algorithm for microscrew thread parameter estimation , 2010, Eng. Appl. Artif. Intell..

[32]  P. K. Chattopadhyay,et al.  Hybrid Differential Evolution With Biogeography-Based Optimization for Solution of Economic Load Dispatch , 2010, IEEE Transactions on Power Systems.

[33]  Carlos García-Martínez,et al.  Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report , 2010, Comput. Oper. Res..

[34]  Taher Niknam,et al.  An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective Distribution Feeder Reconfiguration , 2009 .

[35]  Mitsuo Gen,et al.  Integrated multistage logistics network design by using hybrid evolutionary algorithm , 2009, Comput. Ind. Eng..

[36]  Youfang Huang,et al.  A quay crane dynamic scheduling problem by hybrid evolutionary algorithm for berth allocation planning , 2009, Comput. Ind. Eng..

[37]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[38]  Bernhard Sendhoff,et al.  Covariance Matrix Adaptation Revisited - The CMSA Evolution Strategy - , 2008, PPSN.

[39]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[40]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[41]  Moritoshi Yasunaga,et al.  Implementation of an Effective Hybrid GA for Large-Scale Traveling Salesman Problems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[42]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[43]  Chang Wook Ahn,et al.  Advances in Evolutionary Algorithms: Theory, Design and Practice , 2006, Studies in Computational Intelligence.

[44]  Carlos A. Coello Coello,et al.  MRMOGA: parallel evolutionary multiobjective optimization using multiple resolutions , 2005, 2005 IEEE Congress on Evolutionary Computation.

[45]  H. Keselman,et al.  Multiple Comparison Procedures , 2005 .

[46]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[47]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[48]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[49]  Stephanie Forrest,et al.  Architecture for an Artificial Immune System , 2000, Evolutionary Computation.

[50]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[51]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[52]  Peter J. Fleming,et al.  The Stud GA: A Mini Revolution? , 1998, PPSN.

[53]  Zbigniew Michalewicz,et al.  Inver-over Operator for the TSP , 1998, PPSN.

[54]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[55]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[56]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[57]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[58]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: The (, )-Theory , 1994, Evolutionary Computation.

[59]  O. J. Dunn Multiple Comparisons among Means , 1961 .

[60]  M. Friedman A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .

[61]  Amitava Chatterjee,et al.  Hybrid BBO-DE Algorithms for Fuzzy Entropy-Based Thresholding , 2013 .

[62]  Amitava Chatterjee,et al.  A Comparative Study of Modified BBO Variants and Other Metaheuristics for Optimal Power Allocation in Wireless Sensor Networks , 2013, Advances in Heuristic Signal Processing and Applications.

[63]  Domen Mongus,et al.  A hybrid evolutionary algorithm for tuning a cloth-simulation model , 2012, Appl. Soft Comput..

[64]  B. K. Panigrahi,et al.  ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE , 2010 .

[65]  Zhun Fan,et al.  Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique , 2009 .

[66]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[67]  Luigi Fortuna,et al.  Evolutionary Optimization Algorithms , 2001 .