Distribution of phytoplankton groups within the deep chlorophyll maximum

XVIII Simposio Iberico de Estudios de Biologia Marina (SIEBM), 2-5 september 2014, Gijon.-- XVIII Simposio Iberico de Estudos de Biologia Marinha (SIEBM).-- 1 page

[1]  L. Guillou,et al.  PIGMENT SUITES AND TAXONOMIC GROUPS IN PRASINOPHYCEAE 1 , 2004 .

[2]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .

[3]  G. Kraay,et al.  Vertical distribution and pigment composition of a picoplanktonic prochlorophyte in the subtropical North Atlantic: A combined study of HPLC-analysis of pigments and flow cytometry. , 1990 .

[4]  X. Morán,et al.  Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay , 2006 .

[5]  J. Cullen,et al.  Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? , 2015, Annual review of marine science.

[6]  P. Holligan,et al.  Distribution and chromatic adaptation of phytoplankton within a shelf sea thermocline , 2009 .

[7]  M. D. Keller,et al.  A comparison of HPLC pigment signatures and electron microscopic observations for oligotrophic waters of the North Atlantic and Pacific Oceans , 1996 .

[8]  T. D. Dickey,et al.  Influence of mesoscale eddies on new production in the Sargasso Sea , 1998, Nature.

[9]  R. Massana,et al.  Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters. , 2016, Environmental microbiology.

[10]  M. Latasa A simple method to increase sensitivity for RP‐HPLC phytoplankton pigment analysis , 2014 .

[11]  M. Crassous,et al.  Nutrient and phytoplankton distribution in the Loire River plume (Bay of Biscay, France) resolved by a new Fine Scale Sampler , 2005 .

[12]  J. Garrido,et al.  Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases , 2000 .

[13]  J. Ruiz,et al.  Hysteresis conditions the vertical position of deep chlorophyll maximum in the temperate ocean , 2013 .

[14]  P. Falkowski,et al.  Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups , 2004 .

[15]  B. Edvardsen,et al.  Phosphorus availability modifies carbon production in Coccolithus pelagicus (Haptophyta) , 2015 .

[16]  Michael A. St. John,et al.  A seasonal diary of phytoplankton in the North Atlantic , 2014, Front. Mar. Sci..

[17]  M. Estrada Phytoplankton assemblages across a NW Mediterranean front: Changes from winter mixing to spring stratification , 1991 .

[18]  Andrew J. Watson,et al.  A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization , 2000, Nature.

[19]  Fabrizio D'Ortenzio,et al.  Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A Bio‐Argo float investigation , 2014 .

[20]  张静,et al.  Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening , 2015 .

[21]  J. Gasol,et al.  Significant year‐round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system , 2007 .

[22]  Roman Stocker,et al.  Thin phytoplankton layers: characteristics, mechanisms, and consequences. , 2012, Annual review of marine science.

[23]  M. Lomas,et al.  COMPARISONS OF NITRATE UPTAKE, STORAGE, AND REDUCTION IN MARINE DIATOMS AND FLAGELLATES , 2000 .

[24]  H. Claustre,et al.  Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans , 2009, Proceedings of the National Academy of Sciences.

[25]  D. Vaulot,et al.  Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance , 1999, Microbiology and Molecular Biology Reviews.

[26]  T. Smayda The suspension and sinking of phytoplankton in the sea , 1970 .

[27]  M. Behrenfeld,et al.  Abandoning Sverdrup's Critical Depth Hypothesis on phytoplankton blooms. , 2010, Ecology.

[28]  T. G. Owens,et al.  Light-Shade Adaptation : TWO STRATEGIES IN MARINE PHYTOPLANKTON. , 1980, Plant physiology.

[29]  J. Yoder,et al.  Pumping of nutrients to ocean surface waters by the action of propagating planetary waves , 2001, Nature.

[30]  X. Morán,et al.  Seasonality of picophytoplankton chlorophyll a and biomass in the central Cantabrian Sea, southern Bay of Biscay , 2008 .

[31]  M. Ruíz-Villarreal,et al.  Mixed layer depth (MLD) variability in the southern Bay of Biscay. Deepening of winter MLDs concurrent with generalized upper water warming trends? , 2011 .

[32]  J. Lund,et al.  The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting , 1958, Hydrobiologia.

[33]  E. Laws,et al.  Cell cycle and physiological characteristics of Synechococcus ( WH 7803 ) in chemostat culture , 2006 .

[34]  Raffaele Ferrari,et al.  Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms , 2011 .

[35]  R. Bidigare,et al.  Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean , 2003 .

[36]  Oscar Schofield,et al.  Influence of zeaxanthin on quantum yield of photosynthesis of Synechococcus clone WH7803 (DC2) , 1989 .

[37]  J. Steele,et al.  The vertical distribution of chlorophyll , 1960, Journal of the Marine Biological Association of the United Kingdom.

[38]  K. Johnson,et al.  Differential Distributions of Synechococcus Subgroups Across the California Current System , 2011, Front. Microbio..

[39]  U. Riebesell,et al.  The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi , 2000 .

[40]  Peter Mullany,et al.  Acquired Antibiotic Resistance Genes: An Overview , 2011, Front. Microbio..

[41]  A. Longhurst Ecological Geography of the Sea , 1998 .

[42]  H. Sverdrup,et al.  On Conditions for the Vernal Blooming of Phytoplankton , 1953 .

[43]  R. Goericke,et al.  Zeaxanthin and ß‐carotene in Synechococcus WH7803 respond differently to irradiance , 1988 .

[44]  J. Gasol,et al.  Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters , 2013, The ISME Journal.

[45]  S. Wright,et al.  Guidelines for collection and pigment analysis of field samples , 1997 .

[46]  E. Marañón,et al.  Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea , 2016 .

[47]  P. Tester,et al.  Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs , 1997 .

[48]  D. Fratantoni,et al.  A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders , 2009 .

[49]  Glen A. Tarran,et al.  High bacterivory by the smallest phytoplankton in the North Atlantic Ocean , 2008, Nature.

[50]  L. Dubroca,et al.  Response of the deep chlorophyll maximum to fluctuations in vertical mixing intensity , 2013 .

[51]  C. Gobler,et al.  Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics , 2011, Proceedings of the National Academy of Sciences.

[52]  E. Venrick Phytoplankton species structure in the central North Pacific, 1973-1996 : variability and persistence , 1999 .

[53]  Luis Pedro Coelho,et al.  Structure and function of the global ocean microbiome , 2015, Science.

[54]  G. Jackson,et al.  Small Phytoplankton and Carbon Export from the Surface Ocean , 2007, Science.

[55]  E. Berdalet,et al.  Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean , 1993 .

[56]  Sallie W. Chisholm,et al.  Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties , 1995 .

[57]  P. Harrison,et al.  Sinking-rate response of natural assemblages of temperate and subtropical phytoplankton to nutrient depletion , 1984 .

[58]  A. Worden,et al.  Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component , 2004 .

[59]  J. Cristobo,et al.  Habitat characterization of deep-water coral reefs in La Gaviera canyon (Avilés Canyon System, Cantabrian Sea) , 2014 .

[60]  D. Vaulot,et al.  Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes , 2008 .

[61]  Susanne Menden-Deuer,et al.  Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton , 2000 .

[62]  Marcel L. Dijkstra Mechanisms contributing to the deep chlorophyll maximum in Lake Superior , 2011 .

[63]  J. Gasol,et al.  Preferences of phytoplankton groups for waters of different trophic status in the northwestern Mediterranean sea , 2010 .

[64]  C. Pedrós-Alió,et al.  Predation by ciliates on a metalimnetic Cryptomonas population: feeding rates, impact and effects of vertical migration , 1995 .

[65]  M. Estrada,et al.  PIGMENT SIGNATURES AND PHYLOGENETIC RELATIONSHIPS OF THE PAVLOVOPHYCEAE (HAPTOPHYTA) 1 , 2003 .

[66]  B. Hodges,et al.  Simple models of steady deep maxima in chlorophyll and biomass , 2004 .

[67]  P. Thompson,et al.  Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms , 1997 .

[68]  Elizabeth L. Mann,et al.  Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities , 2014, The ISME Journal.

[69]  R. Bidigare,et al.  Cell cycle and physiological characteristics of Synechococcus (WH7803) in chemostat culture , 1999 .

[70]  S. Strom Light-aided digestion, grazing and growth in herbivorous protists , 2001 .

[71]  J. Raven,et al.  Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light , 2009 .

[72]  G. Kulk,et al.  Temperature-dependent growth and photophysiology of prokaryotic and eukaryotic oceanic picophytoplankton , 2012 .

[73]  John J. Cullen,et al.  The deep chlorophyll maximum comparing vertical profiles of chlorophyll a , 1982 .

[74]  M. Lomas,et al.  Changes in partitioning of carbon amongst photosynthetic pico- and nano-plankton groups in the Sargasso Sea in response to changes in the North Atlantic Oscillation , 2013 .

[75]  E. Venrick The vertical distributions of chlorophyll and phytoplankton species in the North Pacific central environment , 1988 .

[76]  J. C. Goldman,et al.  Effect of large marine diatoms growing at low light on episodic new production , 2003 .

[77]  D. Vaulot,et al.  A Single Species, Micromonas pusilla (Prasinophyceae), Dominates the Eukaryotic Picoplankton in the Western English Channel , 2004, Applied and Environmental Microbiology.