Development and experimental validation of an arbitrary Lagrangian‐Eulerian (ALE) method for soil mechanics

Large deformation problems in soil mechanics and geotechnical engineering can hardly be addressed by the traditional Lagrangian finite element method because the material and mesh motions coincide. This paper presents an arbitrary Lagrangian-Eulerian (ALE) method in which the computational mesh is regarded as an independent reference domain to keep mesh quality acceptable throughout the calculation. The relative velocity between the material and the mesh introduces additional complexity which is treated by a Lagrange-plus-remap strategy in conjunction with efficient algorithms. Because thorough validation plays a crucial role, experimental model testing concerned with penetration into sand have been carried out and back-analyzed by using the ALE method. Entwicklung und experimentelle Validierung einer allgemeinen Lagrange-Euler (ALE) Methode fur Bodenmechanik. Bodenmechanische und geotechnische Problemstellungen mit grosen Verformungen konnen mit der traditionellen Lagrange'schen Finite Elemente Methode kaum gelost werden, weil hierbei die Bewegung des Netzes der des Materials entspricht. Dieser Beitrag prasentiert eine allgemeine Lagrange-Euler (ALE) Methode, bei der das Netz als unabhangiges Referenzgebiet betrachtet wird, um die Qualitat des Netzes wahrend der gesamten Berechnung aufrecht zu erhalten. Der sich aus der Relativgeschwindigkeit zwischen Material und Netz ergebende Zuwachs an Komplexitat wird mittels einer Lagrange-plus-Remap Strategie und effizienten Algorithmen behandelt. Weil die sorgfaltige Validierung eine wichtige Rolle spielt, wurden experimentelle Modellversuche zur Penetration in Sand durchgefuhrt und mit Hilfe der ALE Methode nachgerechnet.

[1]  Majidreza Nazem,et al.  Some computational aspects for solving deep penetration problems in geomechanics , 2009 .

[2]  Jonathan Knappett,et al.  Craig’s Soil Mechanics , 1974 .

[3]  Kathrin Abendroth,et al.  Nonlinear Finite Elements For Continua And Structures , 2016 .

[4]  Daniel Aubram,et al.  Optimization-based smoothing algorithm for triangle meshes over arbitrarily shaped domains , 2014, ArXiv.

[5]  Daniel Aubram,et al.  An arbitrary Lagrangian-Eulerian method for penetration into sand at finite deformation , 2014 .

[6]  S. Savidis,et al.  Vibro-Injection Pile Installation in Sand: Part II—Numerical and Experimental Investigation , 2015 .

[7]  G. Grabe,et al.  A Coupled Eulerian-Lagrangian approach to solve geotechnical problems involving large deformations , 2010 .

[8]  G. J. Creus,et al.  Simulation of 3D metal-forming using an arbitrary Lagrangian–Eulerian finite element method , 2001 .

[9]  S. Savidis,et al.  An ALE Finite Element Method for cohesionless soil at large strains , 2000 .

[10]  P. Wriggers,et al.  An ALE method for penetration into sand utilizing optimization-based mesh motion , 2015 .

[11]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[12]  P. V. Wolffersdorff,et al.  A hypoplastic relation for granular materials with a predefined limit state surface , 1996 .

[13]  Theodoros Triantafyllidis,et al.  Holistic Simulation of Geotechnical Installation Processes , 2015 .

[14]  Jürgen Grabe,et al.  Explicit modeling of cone and strip footing penetration under drained and undrained conditions using a visco‐hypoplastic model , 2011 .

[15]  W. A. Take,et al.  Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry , 2003 .

[16]  Daniel Aubram,et al.  ARBITRARY LAGRANGIAN-EULERIAN FINITE ELEMENT FORMULATION FOR GEOTECHNICAL CONSTRUCTION PROCESSES * , 2008 .

[17]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[18]  Junliang Yang,et al.  An operator‐split ALE model for large deformation analysis of geomaterials , 2007 .

[19]  Yean Khow Chow,et al.  Eulerian Finite-Element Technique for Analysis of Jack-Up Spudcan Penetration , 2012 .

[20]  J. Wells,et al.  Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH) , 2011 .

[21]  Günther Meschke,et al.  A new class of algorithms for classical plasticity extended to finite strains. Application to geomaterials , 1993 .

[22]  I. Herle,et al.  Hypoplastic model for cohesionless soils with elastic strain range , 1997 .

[23]  Jürgen Grabe,et al.  Numerical modeling of saturated soils, based on Smoothed Particle Hydrodynamics (SPH) , 2014 .

[24]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[25]  M. Obermayr,et al.  Anwendung der Diskrete‐Elemente‐Methode zur Vorhersage von Kräften bei der Bodenbearbeitung , 2013 .

[26]  Hai-Sui Yu,et al.  Discrete element modelling of deep penetration in granular soils , 2006 .

[27]  Aleksandar S. Vesic,et al.  Analysis of Ultimate Loads of Shallow Foundations , 1973 .

[28]  Gerd Gudehus,et al.  Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies , 1999 .

[29]  S. Savidis,et al.  Vibro-Injection Pile Installation in Sand: Part I—Interpretation as Multi-material Flow , 2015 .

[30]  David White,et al.  GeoPIV: particle image velocimetry (PIV) software for use in geotechnical testing , 2002 .

[31]  David White,et al.  An investigation into the behaviour of pressed-in piles , 2002 .

[32]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[33]  Issam K. J. al Kafaji Formulation of a dynamic material point method (MPM) for geomechanical problems , 2013 .

[34]  Lars Beuth,et al.  Formulation and application of a quasi-static material point method , 2012 .

[35]  Daniel Aubram,et al.  Differential geometry applied to continuum mechanics , 2009 .