Metallurgical leaching of metal powder for facile and generalized synthesis of metal sulfide nanocrystals

[1]  E. Lester,et al.  The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials. , 2014, Nanoscale.

[2]  Jonathan S. Owen,et al.  Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. , 2013, Journal of the American Chemical Society.

[3]  C. Sangregorio,et al.  Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions. , 2013, Journal of the American Chemical Society.

[4]  N. Duffy,et al.  In Situ Formation of Reactive Sulfide Precursors in the One-Pot, Multigram Synthesis of Cu2ZnSnS4 Nanocrystals , 2013 .

[5]  M. A. Malik,et al.  Organotin Dithiocarbamates: Single-Source Precursors for Tin Sulfide Thin Films by Aerosol-Assisted Chemical Vapor Deposition (AACVD) , 2013 .

[6]  Guobao Xu,et al.  Synthesis and applications of noble metal nanocrystals with high-energy facets , 2012 .

[7]  Gang Wang,et al.  A Novel and Versatile Strategy to Prepare Metal–Organic Molecular Precursor Solutions and Its Application in Cu(In,Ga)(S,Se)2 Solar Cells , 2012 .

[8]  A. Martucci,et al.  Highly Luminescent and Temperature Stable Quantum Dot Thin Films Based on a ZnS Composite , 2012 .

[9]  Zhan'ao Tan,et al.  Highly Emissive and Color‐Tunable CuInS2‐Based Colloidal Semiconductor Nanocrystals: Off‐Stoichiometry Effects and Improved Electroluminescence Performance , 2012 .

[10]  Shu-Hao Chang,et al.  Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[11]  A. Pistone,et al.  Structural and optical properties of novel surfactant-coated Yb@TiO2 nanoparticles , 2011 .

[12]  E. List,et al.  A Direct Route Towards Polymer/Copper Indium Sulfide Nanocomposite Solar Cells , 2011 .

[13]  Yingying Lv,et al.  A generally synthetic route to semiconducting metal sulfide nanocrystals by using corresponding metal powder and cysteine as metallic and sulfuric sources, respectively , 2011 .

[14]  Hua-rui Xu,et al.  Generalized synthesis of metal sulfide nanocrystals from single-source precursors: size, shape and chemical composition control and their properties , 2011 .

[15]  C. Tai,et al.  Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[16]  A. Pistone,et al.  Structural and Optical Properties of Novel Surfactant Coated TiO2–Ag Based Nanoparticles , 2010 .

[17]  P. A. Ajibade,et al.  Synthesis and characterization of metal complexes of N -alkyl- N -phenyl dithiocarbamates , 2010 .

[18]  Yan Zhang,et al.  Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. , 2010, Journal of the American Chemical Society.

[19]  Jin-Kyu Lee,et al.  Thermal decomposition mechanism of single-molecule precursors forming metal sulfide nanoparticles. , 2010, Journal of the American Chemical Society.

[20]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[21]  T. Hyeon,et al.  Simple and Generalized Synthesis of Semiconducting Metal Sulfide Nanocrystals , 2009 .

[22]  Yadong Li,et al.  A synthetic method for transition-metal chalcogenide nanocrystals. , 2009, Chemistry.

[23]  Yuqiu Wang,et al.  Morphology Control of β-In2S3 from Chrysanthemum-Like Microspheres to Hollow Microspheres: Synthesis and Electrochemical Properties , 2009 .

[24]  Jun Zhu,et al.  Ultrathin β-In2S3 Nanobelts: Shape-Controlled Synthesis and Optical and Photocatalytic Properties , 2008 .

[25]  Weizhi Wang,et al.  Self-Assembled Porous 3D Flowerlike β-In2S3 Structures : Synthesis, Characterization, and Optical Properties , 2008 .

[26]  M. Sotelo-Lerma,et al.  Structural and optical studies on thermal-annealed In2S3 films prepared by the chemical bath deposition technique , 2005 .

[27]  H. Low,et al.  Preparation of Ag(2)S nanocrystals of predictable shape and size. , 2004, Angewandte Chemie.

[28]  Wei Chen,et al.  Full-color emission from In2S3 and ln(2)S(3): Eu3+ nanoparticles , 2004 .

[29]  Young Woon Kim,et al.  Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. , 2003, Journal of the American Chemical Society.

[30]  V. Chanturiya,et al.  Investigation into Products of Dimethyl Dithiocarbamate and Xanthate Sorption on Sulfide Minerals of Copper-Nickel Ores , 2003 .

[31]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[32]  E. Kruus,et al.  Raman characterization of metal-alkanethiolates , 1999 .

[33]  A. G. Souza,et al.  N,N′-Dialkyldithiocarbamate chelates of indium(III): alternative synthetic routes and thermodynamics characterization , 1999 .

[34]  D. Bradshaw,et al.  The flotation of pyrite using mixtures of dithiocarbamates and other thiol collectors , 1994 .

[35]  H. A. Bright,et al.  Photometric determination of copper in iron and steel with diethyldithiocarbamate , 1951 .

[36]  Hua-rui Xu,et al.  A generalized strategy for controlled synthesis of ternary metal sulfide nanocrystals , 2014 .

[37]  Mike D. Adams,et al.  Advances in gold ore processing , 2005 .

[38]  K. Tang,et al.  Ultraviolet spectrophotometric determination of primary and secondary aliphatic amines by formation of dithiocarbamates , 1989 .

[39]  T. E. Cullen Spectrophotometric Determination of Dithiocarbamate Residues in Food Crops. , 1964 .