Fiber-Optic Microarray for Simultaneous Detection of Multiple Harmful Algal Bloom Species

ABSTRACT Harmful algal blooms (HABs) are a serious threat to coastal resources, causing a variety of impacts on public health, regional economies, and ecosystems. Plankton analysis is a valuable component of many HAB monitoring and research programs, but the diversity of plankton poses a problem in discriminating toxic from nontoxic species using conventional detection methods. Here we describe a sensitive and specific sandwich hybridization assay that combines fiber-optic microarrays with oligonucleotide probes to detect and enumerate the HAB species Alexandrium fundyense, Alexandrium ostenfeldii, and Pseudo-nitzschia australis. Microarrays were prepared by loading oligonucleotide probe-coupled microspheres (diameter, 3 μm) onto the distal ends of chemically etched imaging fiber bundles. Hybridization of target rRNA from HAB cells to immobilized probes on the microspheres was visualized using Cy3-labeled secondary probes in a sandwich-type assay format. We applied these microarrays to the detection and enumeration of HAB cells in both cultured and field samples. Our study demonstrated a detection limit of approximately 5 cells for all three target organisms within 45 min, without a separate amplification step, in both sample types. We also developed a multiplexed microarray to detect the three HAB species simultaneously, which successfully detected the target organisms, alone and in combination, without cross-reactivity. Our study suggests that fiber-optic microarrays can be used for rapid and sensitive detection and potential enumeration of HAB species in the environment.

[1]  D. Anderson,et al.  Identification and enumeration of Alexandrium spp. from the Gulf of Maine using molecular probes , 2005 .

[2]  E. G. Vrieling,et al.  Immuno flow cytometry in marine phytoplankton research , 2000 .

[3]  J. Landsberg,et al.  The Effects of Harmful Algal Blooms on Aquatic Organisms , 2002 .

[4]  E. Carpenter,et al.  AN EMPIRICAL PROTOCOL FOR WHOLE‐CELL IMMUNOFLUORESCENCE OF MARINE PHYTOPLANKTON 1 , 1996 .

[5]  David R Walt,et al.  Imaging optical sensor arrays. , 2002, Current opinion in chemical biology.

[6]  Wayne W. Carmichael,et al.  Health Effects of Toxin-Producing Cyanobacteria: “The CyanoHABs” , 2001 .

[7]  R H Pierce,et al.  Innovative techniques for harmful algal toxin analysis , 2001, Environmental toxicology and chemistry.

[8]  A. Cembella,et al.  Discrimination of the toxigenic dinoflagellates Alexandrium tamarense and A. ostenfeldii in co-occurring natural populations from Scottish coastal waters , 2003 .

[9]  F. Chavez,et al.  Identification of Pseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats , 1996 .

[10]  E. G. Vrieling,et al.  IMMUNOFLUORESCENCE IN PHYTOPLANKTON RESEARCH: APPLICATIONS AND POTENTIAL , 1996 .

[11]  D R Walt,et al.  High-density fiber-optic DNA random microsphere array. , 2000, Analytical chemistry.

[12]  E. G. Vrieling,et al.  Detection of the ichthyotoxic dinoflagellate Gyrodinium (cf.) aureolum and morphologically related Gymnodinium species using monoclonal antibodies: a specific immunological tool , 1994 .

[13]  J. Burkholder,et al.  Development of Real-Time PCR Assays for Rapid Detection of Pfiesteria piscicida and Related Dinoflagellates , 2000, Applied and Environmental Microbiology.

[14]  A. Bej,et al.  Detection of pathogenic bacteria in shellfish using multiplex PCR followed by CovaLink NH microwell plate sandwich hybridization. , 2003, Journal of microbiological methods.

[15]  D. Walt,et al.  High-density, microsphere-based fiber optic DNA microarrays. , 2003, Biosensors & bioelectronics.

[16]  J. F. Cavender,et al.  Detection of Alexandrium tamarensis by rapid PCR analysis. , 1999, BioTechniques.

[17]  B. Brandhorst,et al.  Stability of nuclear RNA in mammalian cells. , 1974, Journal of molecular biology.

[18]  David R Walt,et al.  High-density fiber-optic genosensor microsphere array capable of zeptomole detection limits. , 2002, Analytical chemistry.

[19]  F. Chavez,et al.  Detection and quantification of Pseudo‐nitzschia australis in cultured and natural populations using LSU rRNA‐targeted probes , 1997 .

[20]  David R. Walt,et al.  Bead-based Fiber-Optic Arrays , 2000, Science.

[21]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[22]  G. Hallegraeff A review of harmful algal blooms and their apparent global increase , 1993 .

[23]  Donald M. Anderson,et al.  Turning back the harmful red tide , 1997, Nature.

[24]  I. Karunasagar,et al.  Polymerase Chain Reaction in Detection of Gymnodinium mikimotoi and Alexandrium minutum in Field Samples from Southwest India , 2001, Marine Biotechnology.

[25]  E. G. Vrieling,et al.  Immuno-flow cytometric identification and enumeration of the ichthyotoxic dinoflagellate Gyrodinium aureolum Hulburt in artificially mixed algal populations , 1996 .

[26]  D. Anderson,et al.  Discrimination between domoic-acid-producing and nontoxic forms of the diatom Pseudonitzschia pungens using immunofluorescence , 1993 .

[27]  Mauro Magnani,et al.  Development of a Real-Time PCR Assay for Rapid Detection and Quantification of Alexandrium minutum (a Dinoflagellate) , 2004, Applied and Environmental Microbiology.

[28]  S. Bates,et al.  Electro-immunoblotting characterization ofPseudo-nitzschia multiseries andP. pungens antigens recognized by antibodies directed against whole cells , 2004, Journal of Applied Phycology.

[29]  Y. Sako,et al.  IDENTIFICATION OF THE TOXIC DINOFLAGELLATES ALEXANDRIUM CATENELLA AND A. TAMARENSE (DINOPHYCEAE) USING DNA PROBES AND WHOLE‐CELL HYBRIDIZATION 1 , 1996 .

[30]  M. Sogin,et al.  The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. , 1988, Gene.

[31]  T. Smayda,et al.  Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea , 1997 .

[32]  David R Walt,et al.  Fluorescence-based fibre optic arrays: a universal platform for sensing. , 2003, Chemical Society reviews.

[33]  A. Collins,et al.  Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Gary J. Kirkpatrick,et al.  Harmful algal blooms: causes, impacts and detection , 2003, Journal of Industrial Microbiology and Biotechnology.

[35]  David R Walt,et al.  Detection of Salmonella spp. using microsphere-based, fiber-optic DNA microarrays. , 2005, Analytical chemistry.

[36]  C. Scholin,et al.  IDENTIFICATION AND ENUMERATION OF CULTURED AND WILD PSEUDO‐NITZSCHIA (BACILLARIOPHYCEAE) USING SPECIES‐SPECIFIC LSU rRNA‐TARGETED FLUORESCENT PROBES AND FILTER‐BASED WHOLE CELL HYBRIDIZATION , 1998 .

[37]  S. Beaucage Strategies in the preparation of DNA oligonucleotide arrays for diagnostic applications. , 2001, Current medicinal chemistry.

[38]  E. Berdalet,et al.  DETECTION OF THE TOXIC DINOFLAGELLATE ALEXANDRIUM FUNDYENSE (DINOPHYCEAE) WITH OLIGONUCLEOTIDE AND ANTIBODY PROBES: VARIABILITY IN LABELING INTENSITY WITH PHYSIOLOGICAL CONDITION , 1999 .

[39]  D. Anderson,et al.  Fibre optic microarrays for the detection and enumeration of harmful algal bloom species , 2006 .

[40]  D. M. Anderson,et al.  Red tides. , 1994, Scientific American.

[41]  David S. Latchman,et al.  Biochemistry (4th edn) , 1995 .

[42]  D. Anderson,et al.  Molecular studies of Dinophysis (Dinophyceae) species from Sweden and North America , 2002 .

[43]  David R Walt,et al.  Combinatorial decoding: an approach for universal DNA array fabrication. , 2003, Journal of the American Chemical Society.

[44]  B. Malorny,et al.  Detection of Salmonella spp. , 2003, Methods in molecular biology.