Majority-based reversible logic gates

Reversible logic plays an important role in the synthesis of circuits for quantum computing. In this paper, we introduce families of reversible gates based on the majority Boolean function (MBF) and we prove their properties in reversible circuit synthesis. These gates can be used to synthesize reversible circuits of minimum "scratchpad register width" for arbitrary reversible functions. We show that, given a MBF f with 2k + 1 inputs, f can be implemented by a reversible logic gate with 2k + 1 inputs and 2k + 1 outputs, i.e., without any constant inputs. We also demonstrate new gates from this family with very efficient quantum realizations for majority-based applications. They can be used to synthesize any reversible function of the same width in conjunction with inverters and Feynman (2-qubit controlled-NOT) gates. The gate universality problem is formulated in terms of elementary group theory and solved using the algebraic software GAP.

[1]  John P. Hayes,et al.  Reversible logic circuit synthesis , 2002, IWLS.

[2]  Marek A. Perkowski,et al.  Reversible Logic Synthesis by Iterative Compositions , 2002, IWLS.

[3]  Gerhard W. Dueck,et al.  GARBAGE IN REVERSIBLE DESIGN OF MULTIPLE OUTPUT FUNCTIONS , 2003 .

[4]  Gerhard W. Dueck,et al.  Reversible Function Synthesis with Minimum Garbage Outputs , 1997 .

[5]  Yahiko Kambayashi,et al.  Transformation rules for designing CNOT-based quantum circuits , 2002, DAC '02.

[6]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[7]  Fabrizio Luccio,et al.  On a New Boolean Function with Applications , 1999, IEEE Trans. Computers.

[8]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  D. Coppersmith,et al.  Generators for Certain Alternating Groups with Applications to Cryptography , 1975 .

[10]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[11]  Alan Mishchenko,et al.  Logic Synthesis of Reversible Wave Cascades , 2002, IWLS.

[12]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[13]  Leo Storme,et al.  Group Theoretical Aspects of Reversible Logic Gates , 1999, J. Univers. Comput. Sci..

[14]  Alan Mishchenko,et al.  Automated Synthesis of Generalized Reversible Cascades using Genetic Algorithms , 2002 .

[15]  Guowu Yang,et al.  Quantum logic synthesis by symbolic reachability analysis , 2004, Proceedings. 41st Design Automation Conference, 2004..

[16]  Alexis De Vos,et al.  Reversible and endoreversible computing , 1995 .

[17]  Anas N. Al-Rabadi,et al.  A General Decomposition for Reversible Logic , 2001 .

[18]  Anas N. Al-Rabadi,et al.  Novel methods for reversible logic synthesis and their application to quantum computing , 2002 .

[19]  Sleator,et al.  Realizable Universal Quantum Logic Gates. , 1995, Physical review letters.

[20]  Anas N. Al-Rabadi,et al.  Regularity and Symmetry as a Base for Efficient Realization of Reversible Logic Circuits , 2001 .

[21]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  Richard Phillips Feynman,et al.  Quantum mechanical computers , 1984, Feynman Lectures on Computation.

[23]  Gerhard W. Dueck,et al.  Spectral Techniques for Reversible Logic Synthesis , 2002 .

[24]  Charles E. Stroud Reliability of majority voting based VLSI fault-tolerant circuits , 1994, IEEE Trans. Very Large Scale Integr. Syst..

[25]  D. M. Miller Spectral and two-place decomposition techniques in reversible logic , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..

[26]  Mozammel H. A. Khan,et al.  Multi-Output ESOP Synthesis with Cascades of New Reversible Gate Family , 2003 .

[27]  Leyla Nazhandali,et al.  Majority-Based Decomposition of Carry Logic in Binary Adders , 2002, IWLS.

[28]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[29]  DiVincenzo,et al.  Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  Birger Raa,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) 7063–7078 PII: S0305-4470(02)34943-6 Generating the group of reversible logic gates , 2022 .

[31]  Lech Józwiak,et al.  Regular realization of symmetric functions using reversible logic , 2001, Proceedings Euromicro Symposium on Digital Systems Design.

[32]  Pawel Kerntopf,et al.  Synthesis of multipurpose reversible logic gates , 2002, Proceedings Euromicro Symposium on Digital System Design. Architectures, Methods and Tools.

[33]  Pérès,et al.  Reversible logic and quantum computers. , 1985, Physical review. A, General physics.