S-packing colorings of cubic graphs

Given a non-decreasing sequence $S=(s\_1,s\_2, \ldots, s\_k)$ of positive integers, an {\em $S$-packing coloring} of a graph $G$ is a mapping $c$ from $V(G)$ to $\{s\_1,s\_2, \ldots, s\_k\}$ such that any two vertices with color $s\_i$ are at mutual distance greater than $s\_i$, $1\le i\le k$. This paper studies $S$-packing colorings of (sub)cubic graphs. We prove that subcubic graphs are $(1,2,2,2,2,2,2)$-packing colorable and $(1,1,2,2,3)$-packing colorable. For subdivisions of subcubic graphs we derive sharper bounds, and we provide an example of a cubic graph of order $38$ which is not $(1,2,\ldots,12)$-packing colorable.

[1]  Miguel Angel Fiol,et al.  Some large graphs with given degree and diameter , 1986, J. Graph Theory.

[2]  Jirí Fiala,et al.  The packing chromatic number of infinite product graphs , 2009, Eur. J. Comb..

[3]  Olivier Togni,et al.  Subdivision into i-packings and S-packing chromatic number of some lattices , 2015, Ars Math. Contemp..

[4]  Wayne Goddard,et al.  A note on S-packing colorings of lattices , 2014, Discret. Appl. Math..

[5]  Sandi Klavzar,et al.  Packing Chromatic Number of Base-3 Sierpiński Graphs , 2016, Graphs Comb..

[6]  Daniel W. Cranston,et al.  List‐coloring the square of a subcubic graph , 2008, J. Graph Theory.

[7]  Wayne Goddard,et al.  Braodcast Chromatic Numbers of Graphs , 2008, Ars Comb..

[8]  Christoph von Conta Torus and Other Networks as Communication Networks With Up to Some Hundred Points , 1983, IEEE Trans. Computers.

[9]  Nicolas Gastineau,et al.  Dichotomies properties on computational complexity of S-packing coloring problems , 2013, Discret. Math..

[10]  Charles Delorme,et al.  Large graphs with given degree and diameter. II , 1984, J. Comb. Theory, Ser. B.

[11]  Frédéric Havet Choosability of the square of planar subcubic graphs with large girth , 2009, Discret. Math..

[12]  Oleg V. Borodin,et al.  2-Distance 4-coloring of planar subcubic graphs , 2011 .

[13]  Florica Kramer,et al.  A survey on the distance-colouring of graphs , 2008, Discret. Math..

[14]  Premysl Holub,et al.  The packing chromatic number of the square lattice is at least 12 , 2010, ArXiv.

[15]  Premysl Holub,et al.  A Note on Packing Chromatic Number of the Square Lattice , 2010, Electron. J. Comb..

[16]  Douglas F. Rall,et al.  On the packing chromatic number of some lattices , 2010, Discret. Appl. Math..

[17]  W. Goddard,et al.  The S-packing chromatic number of a graph , 2012, Discuss. Math. Graph Theory.

[18]  Sandi Klavzar,et al.  On the packing chromatic number of Cartesian products, hexagonal lattice, and trees , 2007, Electron. Notes Discret. Math..

[19]  Jirí Fiala,et al.  Complexity of the Packing Coloring Problem for Trees , 2008, WG.