Multispecies time-dependent restricted-active-space self-consistent-field theory for ultracold atomic and molecular gases

We discuss the multispecies time-dependent restricted-active-space self-consistent-field theory, an \textit{ab initio} wavefunction-based theory for mixtures of ultracold atomic and molecular gases. We present the general theory, based on the time-dependent variational principle, and derive the equations of motion. The theory captures in a time-dependent setting, via the specification of the restricted-active-space scheme, different levels of approximation from the mean-field to the full configuration interaction approach. To assess its accuracy and to illustrate its ability to identify correlation effects at successive approximation levels, we apply the theory to compute the ground state energy of a Bose-Bose mixture interacting through a harmonic potential, for which the exact ground state energy is known analytically. We focus on the case of an ideal Bose gas interacting with a few impurities. The intra-species interaction between the impurities is relatively strong compared to the inter-species interaction between the impurities and the ideal noninteracting Bose gas. For this system, we find that an accurate description of the ground state necessitates the possibility of the theory to account for few-particle excitations out of the condensed phase; a situation well accounted for by the present restricted-active-space theory for mixtures; and not within reach for approaches not incorporating orbital-restriction schemes.

[1]  L. Cohen,et al.  Exact reduced density matrices for a model problem , 1985 .

[2]  Ronnie Kosloff,et al.  A direct relaxation method for calculating eigenfunctions and eigenvalues of the Schrödinger equation on a grid , 1986 .

[3]  Axel Pelster,et al.  Numerical study of localized impurity in a Bose-Einstein condensate , 2016 .

[4]  M. Uleysky,et al.  Dynamics of Bec Mixtures Loaded into the Optical Lattice in the Presence of Linear Inter-Component Coupling , 2013, 1311.2381.

[5]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[6]  E. Demler,et al.  Quantum Dynamics of Ultracold Bose Polarons. , 2016, Physical review letters.

[7]  L. Cederbaum,et al.  Role of excited states in the splitting of a trapped interacting Bose-Einstein condensate by a time-dependent barrier. , 2006, Physical review letters.

[8]  L. Cederbaum,et al.  Ground-state fragmentation of repulsive Bose-Einstein condensates in double-trap potentials , 2004, cond-mat/0407516.

[9]  L. Cederbaum,et al.  Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type , 2012, 1207.5128.

[10]  L. Cederbaum,et al.  Multiconfigurational time-dependent Hartree method for mixtures consisting of two types of identical particles , 2007 .

[11]  Fragmentation of Bose-Einstein Condensates , 2006, cond-mat/0605711.

[12]  A. D. McLachlan,et al.  A variational solution of the time-dependent Schrodinger equation , 1964 .

[13]  S. Klaiman,et al.  Solvable model of a trapped mixture of Bose–Einstein condensates , 2016, 1605.05608.

[14]  Collisionally induced transport in periodic potentials. , 2003, Physical review letters.

[15]  J. Light,et al.  Generalized discrete variable approximation in quantum mechanics , 1985 .

[16]  J. Danzl,et al.  Realization of an Excited, Strongly Correlated Quantum Gas Phase , 2009, Science.

[17]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Haobin Wang,et al.  Multilayer formulation of the multiconfiguration time-dependent Hartree theory , 2003 .

[19]  Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture , 2011, Nature.

[20]  E. Timmermans,et al.  Self-localized impurities embedded in a one-dimensional Bose-Einstein condensate and their quantum fluctuations , 2006, cond-mat/0603454.

[21]  G. Mahan Many-particle physics , 1981 .

[22]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[23]  Carl E. Wieman,et al.  PRODUCTION OF TWO OVERLAPPING BOSE-EINSTEIN CONDENSATES BY SYMPATHETIC COOLING , 1997 .

[24]  M. Fleischhauer,et al.  Tunable Polarons of Slow-Light Polaritons in a Two-Dimensional Bose-Einstein Condensate. , 2015, Physical review letters.

[25]  D. Santamore,et al.  Multi-impurity polarons in a dilute Bose–Einstein condensate , 2011, 1111.1002.

[26]  Jürgen Zanghellini,et al.  An MCTDHF approach to multielectron dynamics in laser fields , 2003 .

[27]  B. Chen,et al.  Dipole modes of a superfluid Bose–Fermi mixture in the BCS-BEC crossover , 2017 .

[28]  G. Bruun,et al.  Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate. , 2015, Physical review letters.

[29]  G. Carleo,et al.  Quench-induced breathing mode of one-dimensional Bose gases. , 2013, Physical review letters.

[30]  S. Giorgini,et al.  Bose polaron problem: Effect of mass imbalance on binding energy , 2016, 1610.02203.

[31]  J. E. Thomas,et al.  Polaron-to-polaron transitions in the radio-frequency spectrum of a quasi-two-dimensional Fermi gas. , 2012, Physical review letters.

[32]  Lorenz S. Cederbaum,et al.  Wave chaos as signature for depletion of a Bose-Einstein condensate , 2012, 1202.5869.

[33]  P. Schmelcher,et al.  Mode coupling of interaction quenched ultracold few-boson ensembles in periodically driven lattices , 2016, 1604.02976.

[34]  T. Esslinger,et al.  Exciting collective oscillations in a trapped 1D gas. , 2003, Physical review letters.

[35]  C. Salomon,et al.  A mixture of Bose and Fermi superfluids , 2014, Science.

[36]  T. Gustavson,et al.  Realization of Bose-Einstein condensates in lower dimensions. , 2001, Physical review letters.

[37]  Lars Bojer Madsen,et al.  Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics , 2013, 1304.5904.

[38]  M. Parish,et al.  Impurity in a Bose-Einstein Condensate and the Efimov Effect. , 2015, Physical review letters.

[39]  M. Köhl,et al.  Attractive and repulsive Fermi polarons in two dimensions , 2012, Nature.

[40]  L. Cederbaum,et al.  Accurate multi-boson long-time dynamics in triple-well periodic traps , 2009, 0910.5916.

[41]  M. Oberthaler,et al.  Motional coherence of fermions immersed in a Bose gas. , 2013, Physical review letters.

[42]  K. Iida,et al.  Bose-Einstein-condensate polaron in harmonic trap potentials in the weak-coupling regime: Lee-Low-Pines–type approach , 2016, 1610.00421.

[43]  L. Cederbaum,et al.  Pathway from condensation via fragmentation to fermionization of cold bosonic systems. , 2005, Physical review letters.

[44]  P. Schmelcher,et al.  Few-boson dynamics in double wells: from single-atom to correlated pair tunneling. , 2007, Physical review letters.

[45]  S. Giorgini,et al.  Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods , 2015, 1507.07427.

[46]  P. Schmelcher,et al.  Beyond mean-field dynamics of ultra-cold bosonic atoms in higher dimensions: facing the challenges with a multi-configurational approach , 2016, 1608.04710.

[47]  Lorenz S. Cederbaum,et al.  Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems , 2007, cond-mat/0703237.

[48]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[49]  P. Schmelcher,et al.  The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications. , 2012, The Journal of chemical physics.

[50]  L. Cederbaum,et al.  Fragmentation of Bose-Einstein condensates in multi-well three-dimensional traps [rapid communication] , 2005 .

[51]  Lars Bojer Madsen,et al.  Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics. II. Extended formulation and numerical analysis , 2014 .

[52]  F. Low,et al.  The Motion of Slow Electrons in a Polar Crystal , 1952 .

[53]  A. Pelissetto,et al.  Phase diagram and multicritical behaviors of mixtures of three-dimensional bosonic gases , 2016, 1601.07675.

[54]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[55]  A J Daley,et al.  Single atom transistor in a 1D optical lattice. , 2004, Physical review letters.

[56]  S. Rolston,et al.  Observation of reduced three-body recombination in a correlated 1D degenerate Bose gas. , 2004, Physical review letters.

[57]  A. Pelster,et al.  Statics and dynamics of quasi one-dimensional Bose–Einstein condensate in harmonic and dimple trap , 2015, 1508.05482.

[58]  L. Cederbaum,et al.  Properties of fragmented repulsive condensates , 2004, cond-mat/0412222.

[59]  L. Madsen,et al.  Attosecond photoionization dynamics in neon , 2017, 1712.00625.

[60]  Wenliang Li,et al.  Electron correlation in beryllium: Effects in the ground state, short-pulse photoionization, and time-delay studies , 2017, 1703.06022.

[61]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[62]  Herman Jaramillo,et al.  Wave Mechanics: , 2018, Nature.

[63]  C. Bruder,et al.  Fragmented Superradiance of a Bose-Einstein Condensate in an Optical Cavity. , 2016, Physical review letters.

[64]  C. W. McCurdy,et al.  Two methods for restricted configuration spaces within the multiconfiguration time-dependent Hartree-Fock method , 2015 .

[65]  B. Granger,et al.  Quantum Monte Carlo study of quasi-one-dimensional Bose gases , 2003, cond-mat/0310749.

[66]  Topological superfluidity of lattice fermions inside a Bose-Einstein condensate , 2016, 1610.03352.

[67]  Stefan Palzer,et al.  Quantum transport through a Tonks-Girardeau gas. , 2009, Physical review letters.

[68]  H. Meyer,et al.  Multilayer multiconfiguration time-dependent Hartree method: implementation and applications to a Henon-Heiles hamiltonian and to pyrazine. , 2010, The Journal of chemical physics.

[69]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[70]  M. Greiner,et al.  Observation of resonance condensation of fermionic atom pairs. , 2004, Physical review letters.

[71]  Jun Yan Harmonic Interaction Model and Its Applications in Bose–Einstein Condensation , 2003 .

[72]  Kenichi L. Ishikawa,et al.  Time-dependent complete active-space self-consistent field method for multielectron dynamics in intense laser fields , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[73]  J. Arlt,et al.  Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate. , 2016, Physical review letters.

[74]  A. Widera,et al.  Dynamics of single neutral impurity atoms immersed in an ultracold gas. , 2012, Physical review letters.

[75]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[76]  L. Madsen,et al.  Time-dependent restricted-active-space self-consistent-field singles method for many-electron dynamics. , 2014, The Journal of chemical physics.

[77]  J. Schmiedmayer,et al.  Non-equilibrium coherence dynamics in one-dimensional Bose gases. , 2007, Nature.

[78]  P. Schmelcher,et al.  A unified ab initio approach to the correlated quantum dynamics of ultracold fermionic and bosonic mixtures. , 2017, The Journal of chemical physics.

[79]  C. Wieman,et al.  Dynamics of component separation in a binary mixture of Bose-Einstein condensates , 1998, cond-mat/9804138.

[80]  P. Zoller,et al.  Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms , 2009, 0905.2610.

[81]  L. Madsen,et al.  Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems , 2016, 1612.04419.

[82]  E. Cornell,et al.  Bose Polarons in the Strongly Interacting Regime. , 2016, Physical review letters.

[83]  D. Blume,et al.  Quantum corrections to the ground-state energy of a trapped Bose-Einstein condensate: A diffusion Monte Carlo calculation , 2000, cond-mat/0009220.

[84]  S. R. Clark,et al.  Dynamics, dephasing and clustering of impurity atoms in Bose–Einstein condensates , 2007, 0710.3539.

[85]  C. Westbrook,et al.  Experimental evidence for the breakdown of a Hartree-Fock approach in a weakly interacting Bose gas. , 2006, Physical review letters.

[86]  L. Cederbaum,et al.  Breaking the resilience of a two-dimensional Bose-Einstein condensate to fragmentation , 2014, 1409.0323.

[87]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[88]  P. Schmelcher,et al.  Quantum breathing dynamics of ultracold bosons in one-dimensional harmonic traps: Unraveling the pathway from few- to many-body systems , 2013, 1306.5665.

[89]  Zhigang Wu,et al.  Time-reversal-invariant topological superfluids in Bose-Fermi mixtures , 2017, 1705.10169.

[90]  Kulander Time-dependent Hartree-Fock theory of multiphoton ionization: Helium. , 1987, Physical review. A, General physics.

[91]  Cheng-Hsun Wu,et al.  Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. , 2009, Physical review letters.

[92]  Solvable Model of a Generic Trapped Mixture of Interacting Bosons: Many-Body and Mean-Field Properties at the Infinite-Particle Limit , 2017, 1708.00687.