An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field

This paper is concerned with the numerical approximation of the isothermal Euler equations for charged particles subject to the Lorentz force (the 'Euler-Lorentz' system). When the magnetic field is large, or equivalently, when the parameter e representing the non-dimensional ion cyclotron frequency tends to zero, the so-called drift-fluid (or gyro-fluid) approximation is obtained. In this limit, the parallel motion relative to the magnetic field direction splits from perpendicular motion and is given implicitly by the constraint of zero total force along the magnetic field lines. In this paper, we provide a well-posed elliptic equation for the parallel velocity which in turn allows us to construct an Asymptotic-Preserving (AP) scheme for the Euler-Lorentz system. This scheme gives rise to both a consistent approximation of the Euler-Lorentz model when e is finite and a consistent approximation of the drift limit when e ? 0 . Above all, it does not require any constraint on the space and time-steps related to the small value of e . Numerical results are presented, which confirm the AP character of the scheme and its Asymptotic Stability.

[1]  Fabrice Deluzet,et al.  An asymptotically stable Particle-in-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality , 2006 .

[2]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[3]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[4]  Min Tang,et al.  On the Time Splitting Spectral Method for the Complex Ginzburg-Landau Equation in the Large Time and Space Scale Limit , 2008, SIAM J. Sci. Comput..

[5]  Pierre Degond,et al.  An asymptotically stable discretization for the Euler–Poisson system in the quasi-neutral limit , 2005 .

[6]  Laurent Gosse,et al.  An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .

[7]  J. Juul Rasmussen,et al.  Shear flow generation and energetics in electromagnetic turbulence , 2005 .

[8]  William Dorland,et al.  Gyrofluid turbulence models with kinetic effects , 1993 .

[9]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[10]  William Dorland,et al.  Developments in the gyrofluid approach to Tokamak turbulence simulations , 1993 .

[11]  Dimits Fluid simulations of tokamak turbulence in quasiballooning coordinates. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Bruce D. Scott,et al.  Free-energy conservation in local gyrofluid models , 2005 .

[13]  Laurent Gosse,et al.  Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation , 2004, Numerische Mathematik.

[14]  M Ottaviani,et al.  Effect of collisional zonal-flow damping on flux-driven turbulent transport. , 2004, Physical review letters.

[15]  Giovanni Manfredi,et al.  The gyro-radius scaling of ion thermal transport from global numerical simulations of ion temperature gradient driven turbulence , 1999 .

[16]  G. Toscani,et al.  Diiusive Relaxation Schemes for Discrete-velocity Kinetic Equations , 2007 .

[17]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[18]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[19]  C. Bourdelle,et al.  Global simulations of ion turbulence with magnetic shear reversal , 2001 .

[20]  Ronald H. Cohen,et al.  Low-to-high confinement transition simulations in divertor geometry , 2000 .

[21]  Pierre Degond,et al.  Polynomial upwind schemes for hyperbolic systems , 1999 .

[22]  Volker Naulin Electromagnetic transport components and sheared flows in drift-Alfvén turbulence , 2003 .

[23]  Jian-Guo Liu,et al.  Analysis of an Asymptotic Preserving Scheme for the Euler-Poisson System in the Quasineutral Limit , 2008, SIAM J. Numer. Anal..

[24]  Pierre Degond,et al.  An Asymptotically Stable Semi-Lagrangian scheme in the Quasi-neutral Limit , 2009, J. Sci. Comput..

[25]  Gregory W. Hammett,et al.  Field‐aligned coordinates for nonlinear simulations of tokamak turbulence , 1995 .

[26]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[27]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[28]  Gregory W. Hammett,et al.  Toroidal gyrofluid equations for simulations of tokamak turbulence , 1996 .

[29]  S. Mancini,et al.  DIFFUSION LIMIT OF THE LORENTZ MODEL: ASYMPTOTIC PRESERVING SCHEMES , 2002 .

[30]  S. Jin,et al.  MACH-NUMBER UNIFORM ASYMPTOTIC-PRESERVING GAUGE SCHEMES FOR COMPRESSIBLE FLOWS , 2007 .

[31]  Pierre Degond,et al.  An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..

[32]  Klaus Hallatschek,et al.  Nonlocal simulation of the transition from ballooning to ion temperature gradient mode turbulence in the tokamak edge , 2000 .

[33]  Pierre Degond,et al.  MACH-NUMBER UNIFORM ASYMPTOTIC-PRESERVING GAUGE SCHEMES FOR COMPRESSIBLE FLOWS , 2007 .

[34]  B. Scott Three-Dimensional Computation of Drift Alfven Turbulence , 1997 .

[35]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[36]  L. Pareschi,et al.  Asymptotic preserving Monte Carlo methods for the Boltzmann equation , 2000 .