The Entropy Power Inequality with quantum conditioning

The conditional entropy power inequality is a fundamental inequality in information theory, stating that the conditional entropy of the sum of two conditionally independent vector-valued random variables each with an assigned conditional entropy is minimum when the random variables are Gaussian. We prove the conditional entropy power inequality in the scenario where the conditioning system is quantum. The proof is based on the heat semigroup and on a generalization of the Stam inequality in the presence of quantum conditioning. The entropy power inequality with quantum conditioning will be a key tool of quantum information, with applications in distributed source coding protocols with the assistance of quantum entanglement.

[1]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[2]  V. Giovannetti,et al.  Multimode Gaussian optimizers for the Wehrl entropy and quantum Gaussian channels , 2017, 1705.00499.

[3]  Amin Gohari,et al.  On Dimension Bounds for Auxiliary Quantum Systems , 2012, IEEE Transactions on Information Theory.

[4]  Patrick P. Bergmans,et al.  A simple converse for broadcast channels with additive white Gaussian noise (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[5]  Shuang Wang,et al.  Distributed Source Coding: Theory and Practice: Theory and Practice , 2017 .

[6]  Giacomo De Palma,et al.  Gaussian optimizers for entropic inequalities in quantum information , 2018, Journal of Mathematical Physics.

[7]  Giacomo De Palma,et al.  The conditional Entropy Power Inequality for quantum additive noise channels , 2018, Journal of Mathematical Physics.

[8]  Saikat Guha,et al.  On the minimum output entropy of single-mode phase-insensitive Gaussian channels , 2016 .

[9]  S. Lloyd,et al.  Passive states as optimal inputs for single-jump lossy quantum channels , 2016, 1603.05798.

[10]  Amir Dembo,et al.  Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.

[11]  Giacomo De Palma,et al.  Passive States Optimize the Output of Bosonic Gaussian Quantum Channels , 2015, IEEE Transactions on Information Theory.

[12]  Christoph Hirche,et al.  Bounds on Information Combining With Quantum Side Information , 2017, IEEE Transactions on Information Theory.

[13]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[14]  R. Konig,et al.  The Entropy Power Inequality for Quantum Systems , 2012, IEEE Transactions on Information Theory.

[15]  Sergey G. Bobkov,et al.  Variants of the Entropy Power Inequality , 2017, IEEE Transactions on Information Theory.

[16]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[17]  A. Barron ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .

[18]  A. Holevo,et al.  A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .

[19]  A. Winter,et al.  Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .

[20]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[21]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[22]  Alexander Semenovich Holevo,et al.  Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .

[23]  Saikat Guha,et al.  The Entropy Photon-Number Inequality and its consequences , 2007, 2008 Information Theory and Applications Workshop.

[24]  Dario Trevisan,et al.  Gaussian States Minimize the Output Entropy of the One-Mode Quantum Attenuator , 2016, IEEE Transactions on Information Theory.

[25]  Robert Koenig The conditional entropy power inequality for Gaussian quantum states , 2013, 1304.7031.

[26]  V. Giovannetti,et al.  The One-Mode Quantum-Limited Gaussian Attenuator and Amplifier Have GaussianMaximizers , 2016, Annales Henri Poincaré.

[27]  G. De Palma,et al.  The Conditional Entropy Power Inequality for Bosonic Quantum Systems , 2017, Communications in Mathematical Physics.

[28]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[29]  Robert Koenig,et al.  Geometric inequalities from phase space translations , 2016, 1606.08603.

[30]  Maris Ozols,et al.  Entropy power inequalities for qudits , 2015, ArXiv.

[31]  Giacomo De Palma,et al.  New Lower Bounds to the Output Entropy of Multi-Mode Quantum Gaussian Channels , 2018, IEEE Transactions on Information Theory.

[32]  A. Holevo Gaussian optimizers and the additivity problem in quantum information theory , 2015, 1501.00652.

[33]  S. Szarek,et al.  Volumes of restricted Minkowski sums and the free analogue of the entropy power inequality , 1995, math/9510203.

[34]  V. Giovannetti,et al.  A generalization of the entropy power inequality to bosonic quantum systems , 2014, 1402.0404.

[35]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[36]  S. Lloyd,et al.  Multimode quantum entropy power inequality , 2014, 1408.6410.

[37]  G. Palma Gaussian optimizers and other topics in quantum information , 2017, 1710.09395.

[38]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[39]  Giacomo De Palma,et al.  Gaussian states minimize the output entropy of one-mode quantum Gaussian channels , 2016, Physical review letters.

[40]  Graeme Smith,et al.  Corrections to “The Entropy Power Inequality for Quantum Systems” [Mar 14 1536-1548] , 2016, IEEE Transactions on Information Theory.

[41]  F. Furrer,et al.  Position-momentum uncertainty relations in the presence of quantum memory , 2013, 1308.4527.

[42]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[43]  Vinod M. Prabhakaran,et al.  Rate region of the quadratic Gaussian CEO problem , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[44]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[45]  Yasutada Oohama,et al.  Rate-distortion theory for Gaussian multiterminal source coding systems with several side informations at the decoder , 2005, IEEE Transactions on Information Theory.