Principles of Neural Model Identification, Selection and Adequacy

[1]  Yuhai Wu,et al.  Statistical Learning Theory , 2021, Technometrics.

[2]  Achilleas Zapranis,et al.  Principles of Neural Model Identification, Selection and Adequacy: With Applications to Financial Econometrics , 1999 .

[3]  Garrison W. Cottrell,et al.  Topology-modifying neural network algorithms , 1998 .

[4]  V. Vapnik,et al.  Learning and generalization: theoretical bounds , 1998 .

[5]  Richard S. Zemel,et al.  Minimum description length analysis , 1998 .

[6]  Robert J. Marks,et al.  Neurosmithing: improving neural network learning , 1998 .

[7]  Wolfgang Maass,et al.  Vapnik-Chervonenkis dimension of neural networks , 1998 .

[8]  Halbert White,et al.  Bootstrapping Confidence Intervals for Clinical Input Variable Effects in a Network Trained to Identify the Presence of Acute Myocardial Infarction , 1995, Neural Computation.

[9]  Achilleas Zapranis,et al.  Stock performance modeling using neural networks: A comparative study with regression models , 1994, Neural Networks.

[10]  M. C. Jones,et al.  Model-Free Curve Estimation , 1993 .

[11]  John E. Moody,et al.  Fast Pruning Using Principal Components , 1993, NIPS.

[12]  Chong Gu,et al.  Structured Machine Learning for Soft Classification with Smoothing Spline ANOVA and Stacked Tuning, Testing, and Evaluation , 1993, NIPS.

[13]  Clive W. J. Granger,et al.  Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests , 1993 .

[14]  Y. Ito,et al.  Extension of approximation capability of three layered neural networks to derivatives , 1993, IEEE International Conference on Neural Networks.

[15]  L. Fu,et al.  Sensitivity analysis for input vector in multilayer feedforward neural networks , 1993, IEEE International Conference on Neural Networks.

[16]  David DeMers,et al.  Dimensionality reduction for nonlinear time series , 1992, Optics & Photonics.

[17]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[18]  Gerhard Paass,et al.  Assessing and Improving Neural Network Predictions by the Bootstrap Algorithm , 1992, NIPS.

[19]  Shun-ichi Amari,et al.  Learning Curves, Model Selection and Complexity of Neural Networks , 1992, NIPS.

[20]  Amir D. Aczel Complete Business Statistics , 1992 .

[21]  Martin L. Leibowitz,et al.  Risk-Adjusted Surplus , 1992 .

[22]  Vera Kurková,et al.  Universal Approximation Using Feedforward Neural Networks with Gaussian Bar Units , 1992, ECAI.

[23]  Geoffrey E. Hinton,et al.  Simplifying Neural Networks by Soft Weight-Sharing , 1992, Neural Computation.

[24]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[25]  P. Cardaliaguet,et al.  Original Contribution: Approximation of a function and its derivative with a neural network , 1992 .

[26]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[27]  John E. Moody,et al.  The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems , 1991, NIPS.

[28]  John E. Moody,et al.  Principled Architecture Selection for Neural Networks: Application to Corporate Bond Rating Prediction , 1991, NIPS.

[29]  R. Hecht-Nielsen,et al.  On the geometry of feedforward neural network weight spaces , 1991 .

[30]  Dekang Lin,et al.  Learning and generalization in logic trees , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[31]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[32]  David E. Rumelhart,et al.  Generalization by Weight-Elimination with Application to Forecasting , 1990, NIPS.

[33]  Kurt Hornik,et al.  Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks , 1990, Neural Networks.

[34]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[35]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[36]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[37]  Soumitra Dutta,et al.  Bond rating: A non-conservative application of neural networks , 1988 .

[38]  P. Phillips Partially Identified Econometric Models , 1988, Econometric Theory.

[39]  H. White,et al.  Economic prediction using neural networks: the case of IBM daily stock returns , 1988, IEEE 1988 International Conference on Neural Networks.

[40]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[41]  Changbao Wu,et al.  Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[42]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[43]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[44]  J. Friedman,et al.  Classification and Regression Trees , 1984 .

[45]  B. Efron,et al.  A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .

[46]  D. Freedman Bootstrapping Regression Models , 1981 .

[47]  H. White Consequences and Detection of Misspecified Nonlinear Regression Models , 1981 .

[48]  Spyros Makridakis,et al.  Forecasting: Methods and Applications , 1979 .

[49]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[50]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[51]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[52]  M. Stone An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .

[53]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[54]  Seymour Geisser,et al.  The Predictive Sample Reuse Method with Applications , 1975 .

[55]  R. C. Merton,et al.  AN INTERTEMPORAL CAPITAL ASSET PRICING MODEL , 1973 .

[56]  J. B. Ramsey,et al.  Tests for Specification Errors in Classical Linear Least‐Squares Regression Analysis , 1969 .

[57]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[58]  T. A. Bray,et al.  A Convenient Method for Generating Normal Variables , 1964 .

[59]  M. H. Quenouille The Joint Distribution of Serial Correlation Coefficients , 1949 .

[60]  R. Anderson Distribution of the Serial Correlation Coefficient , 1942 .

[61]  Apostolos-Paul N. Refenes,et al.  Neural Model Identification , 1999 .

[62]  Robert Tibshirani,et al.  A Comparison of Some Error Estimates for Neural Network Models , 1996, Neural Computation.

[63]  John Moody,et al.  Architecture Selection Strategies for Neural Networks: Application to Corporate Bond Rating Predicti , 1995, NIPS 1995.

[64]  T. Hastie,et al.  Statistical Models in S , 1991 .

[65]  David E. Rumelhart,et al.  Predicting the Future: a Connectionist Approach , 1990, Int. J. Neural Syst..

[66]  Geoffrey E. Hinton,et al.  Dimensionality Reduction and Prior Knowledge in E-Set Recognition , 1989, NIPS.

[67]  Lorien Y. Pratt,et al.  Comparing Biases for Minimal Network Construction with Back-Propagation , 1988, NIPS.

[68]  Terrence J. Sejnowski,et al.  Analysis of hidden units in a layered network trained to classify sonar targets , 1988, Neural Networks.

[69]  G. Judge,et al.  Introduction to the Theory and Practice , 1988 .

[70]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[71]  B. Efron Nonparametric standard errors and confidence intervals , 1981 .

[72]  M. Stone Cross-validation:a review 2 , 1978 .

[73]  G. Wahba,et al.  A completely automatic french curve: fitting spline functions by cross validation , 1975 .

[74]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[75]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[76]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[77]  J. Durbin,et al.  Testing for serial correlation in least squares regression. I. , 1950, Biometrika.