Codimension two bifurcations of symmetric cycles in Hamiltonian systems with an antisymplectic involution

[1]  Ian Stewart,et al.  Stability of nonlinear normal modes of symmetric Hamiltonian systems , 1990 .

[2]  Ian Stewart,et al.  Existence of nonlinear normal modes of symmetric Hamiltonian systems , 1990 .

[3]  C. Elphick Global aspects of hamiltonian normal forms , 1988 .

[4]  Y. Wan Instability of vortex streets with small cores , 1988 .

[5]  Jan Cornelis van der Meer,et al.  The Hamiltonian Hopf Bifurcation , 1985 .

[6]  J. Duistermaat Non-integrability of the 1:1:2–resonance , 1984, Ergodic Theory and Dynamical Systems.

[7]  F. Verhulst,et al.  Asymptotic Integrability and Periodic Solutions of a Hamiltonian System in $1:2:2$-Resonance , 1984 .

[8]  M. Kummer,et al.  On averaging, reduction, and symmetry in hamiltonian systems , 1983 .

[9]  A. Weinstein Bifurcations and Hamilton's principle , 1978 .

[10]  Jürgen Moser,et al.  Periodic orbits near an equilibrium and a theorem by Alan Weinstein , 1976 .

[11]  D. Schmidt Periodic solutions near a resonant equilibrium of a Hamiltonian system , 1974 .

[12]  D. Schmidt,et al.  A unifying theory in determining periodic families for Hamiltonian systems at resonance , 1973 .

[13]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[14]  J. Duistermaat Bifurcations of periodic solutions near equilibrium points of Hamiltonian systems , 1984 .

[15]  M. Kummer Lecture 1: On resonant hamiltonian systems with finitely many degrees of freedom. , 1984 .

[16]  Y. Wan GENERIC DEFORMATIONS OF VARIETIES , 1980 .

[17]  J. Sanders,et al.  The 1:2:1-resonance, its periodic orbits and integrals , 1979 .

[18]  J. Mather,et al.  Stratifications and Mappings , 1973 .