DNA helicases Sgs1 and BLM promote DNA double-strand break resection.

A key cellular response to DNA double-strand breaks (DSBs) is 5'-to-3' DSB resection by nucleases to generate regions of ssDNA that then trigger cell cycle checkpoint signaling and DSB repair by homologous recombination (HR). Here, we reveal that in the absence of exonuclease Exo1 activity, deletion or mutation of the Saccharomyces cerevisiae RecQ-family helicase, Sgs1, causes pronounced hypersensitivity to DSB-inducing agents. Moreover, we establish that this reflects severely compromised DSB resection, deficient DNA damage signaling, and strongly impaired HR-mediated repair. Furthermore, we show that the mammalian Sgs1 ortholog, BLM--whose deficiency causes cancer predisposition and infertility in people--also functions in parallel with Exo1 to promote DSB resection, DSB signaling and resistance to DSB-generating agents. Collectively, these data establish evolutionarily conserved roles for the BLM and Sgs1 helicases in DSB processing, signaling, and repair.

[1]  Stephen J. Elledge,et al.  Sensing DNA Damage Through ATRIP Recognition of RPA-ssDNA Complexes , 2003, Science.

[2]  R. Baer,et al.  Nuclear Localization and Cell Cycle-specific Expression of CtIP, a Protein That Associates with the BRCA1 Tumor Suppressor* , 2000, The Journal of Biological Chemistry.

[3]  P. Tran,et al.  Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae. , 2002, DNA repair.

[4]  I. Hickson,et al.  RecQ helicases: suppressors of tumorigenesis and premature aging. , 2003, The Biochemical journal.

[5]  T. Kunkel,et al.  Exonuclease-1 Deletion Impairs DNA Damage Signaling and Prolongs Lifespan of Telomere-Dysfunctional Mice , 2007, Cell.

[6]  L. Symington,et al.  Overlapping functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. , 2001, Genetics.

[7]  Katsuhiko Shirahige,et al.  Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. , 2007, Genes & development.

[8]  R. Kanaar,et al.  DNA double-strand break repair: all's well that ends well. , 2006, Annual review of genetics.

[9]  R. Rothstein,et al.  DNA damage checkpoint and repair centers. , 2004, Current opinion in cell biology.

[10]  R. Sternglanz,et al.  Human homologues of yeast helicase , 1996, Nature.

[11]  R. Kolodner,et al.  SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination , 2001, Nature Genetics.

[12]  K. Kohn,et al.  Replication‐mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA‐dependent protein kinase and dissociates RPA:DNA‐PK complexes , 1999, The EMBO journal.

[13]  T. Lohman,et al.  Non-hexameric DNA helicases and translocases: mechanisms and regulation , 2008, Nature Reviews Molecular Cell Biology.

[14]  Marco Foiani,et al.  DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1 , 2004, Nature.

[15]  S. Elledge,et al.  The DNA damage response: putting checkpoints in perspective , 2000, Nature.

[16]  Jiri Bartek,et al.  Human CtIP promotes DNA end resection , 2007, Nature.

[17]  S. Gasser,et al.  RecQ helicases: at the heart of genetic stability , 2002, FEBS letters.

[18]  Jiri Bartek,et al.  Cell-cycle checkpoints and cancer , 2004, Nature.

[19]  K. Kohn,et al.  Repair of and checkpoint response to topoisomerase I-mediated DNA damage. , 2003, Mutation research.

[20]  J. Borowiec,et al.  Sequential and Synergistic Modification of Human RPA Stimulates Chromosomal DNA Repair* , 2007, Journal of Biological Chemistry.

[21]  R. Kolodner,et al.  Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae. , 2005, DNA repair.

[22]  D. Lydall,et al.  EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. , 2002, Genes & development.

[23]  P. Sung,et al.  Mechanism of eukaryotic homologous recombination. , 2008, Annual review of biochemistry.

[24]  K. Sugimoto,et al.  Requirement of the Mre11 Complex and Exonuclease 1 for Activation of the Mec1 Signaling Pathway , 2004, Molecular and Cellular Biology.

[25]  G. Lucchini,et al.  The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling , 2006, EMBO reports.

[26]  S. Jackson,et al.  Interfaces Between the Detection, Signaling, and Repair of DNA Damage , 2002, Science.

[27]  D. Wigley,et al.  Structure and mechanism of helicases and nucleic acid translocases. , 2007, Annual review of biochemistry.

[28]  Jiri Bartek,et al.  ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks , 2006, Nature Cell Biology.

[29]  L. Symington,et al.  EXO1-A multi-tasking eukaryotic nuclease. , 2004, DNA repair.

[30]  M. Lopes,et al.  Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. , 2005, Molecular cell.

[31]  J. Haber,et al.  Saccharomyces Ku70, Mre11/Rad50, and RPA Proteins Regulate Adaptation to G2/M Arrest after DNA Damage , 1998, Cell.

[32]  K. Khanna,et al.  DNA double-strand breaks: signaling, repair and the cancer connection , 2001, Nature Genetics.

[33]  E. Rogakou,et al.  Megabase Chromatin Domains Involved in DNA Double-Strand Breaks in Vivo , 1999, The Journal of cell biology.