WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER?

The final inspiral of double neutron star and neutron-star-black-hole binaries are likely to be detected by advanced networks of ground-based gravitational wave (GW) interferometers. Maximizing the science returns from such a discovery will require the identification of an electromagnetic counterpart. Here we critically evaluate and compare several possible counterparts, including short-duration gamma-ray bursts (SGRBs), "orphan" optical and radio afterglows, and day-long optical transients powered by the radioactive decay of heavy nuclei synthesized in the merger ejecta ("kilonovae"). We assess the promise of each counterpart in terms of four "Cardinal Virtues": detectability, high fraction, identifiability, and positional accuracy. Taking into account the search strategy for typical error regions of tens of square degrees, we conclude that SGRBs are the most useful to confirm the cosmic origin of a few GW events, and to test the association with neutron star mergers. However, for the more ambitious goal of localizing and obtaining redshifts for a large sample of GW events, kilonovae are instead preferred. Off-axis optical afterglows are detectable for at most tens of percent of events, while radio afterglows are promising only for energetic relativistic ejecta in a high-density medium. Our main recommendations are: (1) an all-sky gamma-ray satellite is essential for temporal coincidence detections, and for GW searches of gamma-ray-triggered events; (2) the Large Synoptic Survey Telescope should adopt a one-day cadence follow-up strategy, ideally with 0.5 hr per pointing to cover GW error regions; and (3) radio searches should focus on the relativistic case, which requires observations for a few months.

[1]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[2]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[3]  B. Paczyński Gamma-ray bursters at cosmological distances , 1986 .

[4]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[5]  A. Krolak,et al.  Coalescing binaries—Probe of the universe , 1987 .

[6]  M. Tinto,et al.  Near optimal solution to the inverse problem for gravitational-wave bursts. , 1989, Physical review. D, Particles and fields.

[7]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[8]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[9]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[10]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[11]  Tsvi Piran,et al.  Gravitational Waves and gamma -Ray Bursts , 1993 .

[12]  Gravitational radiation, inspiraling binaries, and cosmology , 1993, gr-qc/9304020.

[13]  D. Frail,et al.  Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998 , 1998, Nature.

[14]  Li-Xin Li,et al.  Transient Events from Neutron Star Mergers , 1998 .

[15]  William H. Lee Newtonian hydrodynamics of the coalescence of black holes with neutron stars - IV. Irrotational binaries with a soft equation of state , 1999 .

[16]  S. Rosswog,et al.  r-Process in Neutron Star Mergers , 1999, The Astrophysical journal.

[17]  Detecting an association between gamma-ray and gravitational wave bursts , 1999, gr-qc/9903101.

[18]  Chris L. Fryer,et al.  Black Hole-Neutron Star Mergers as Central Engines of Gamma-Ray Bursts , 1999, The Astrophysical journal.

[19]  X. Grave,et al.  SIESTA, a time domain, general purpose simulation program for the VIRGO experiment , 1999 .

[20]  Radio and x-ray signatures of merging neutron stars , 2000, astro-ph/0003218.

[21]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[22]  Re'em Sari,et al.  The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows , 2001 .

[23]  C. Carilli,et al.  Radio-to-Far-Infrared Spectral Energy Distribution and Photometric Redshifts for Dusty Starburst Galaxies , 2001, astro-ph/0112074.

[24]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[25]  Jets, winds and bursts from coalescing neutron stars , 2002, astro-ph/0207576.

[26]  Bernard F. Schutz,et al.  Lighthouses of Gravitational Wave Astronomy , 2001, gr-qc/0111095.

[27]  J. Sylvestre Prospects for the Detection of Electromagnetic Counterparts to Gravitational Wave Events , 2003, astro-ph/0303512.

[28]  S. R. Kulkarni,et al.  A Radio Survey of Type Ib and Ic Supernovae: Searching for Engine-driven Supernovae , 2003, astro-ph/0307228.

[29]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[30]  Melvyn B. Davies,et al.  High-resolution calculations of merging neutron stars - III. Gamma-ray bursts , 2003, astro-ph/0306418.

[31]  J. B. Camp,et al.  Gamma ray bursts and gravitational waves: triggered search strategy in the LIGO science runs , 2004 .

[32]  T. Piran,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The Luminosity and Redshift Distributions of Short-Duration , 2004 .

[33]  Jesper Sollerman,et al.  The optical afterglow of the short γ-ray burst GRB 050709 , 2005, Nature.

[34]  S. R. Kulkarni Modeling Supernova-like Explosions Associated with Gamma-ray Bursts with Short Durations , 2005 .

[35]  X-ray flares following short gamma-ray bursts from shock heating of binary stellar companions , 2005, astro-ph/0510192.

[36]  S. B. Cenko,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[37]  S. Rosswog,et al.  Mergers of Neutron Star-Black Hole Binaries with Small Mass Ratios: Nucleosynthesis, Gamma-Ray Bursts, and Electromagnetic Transients , 2005, astro-ph/0508138.

[38]  W. Hajdas,et al.  An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts , 2005, Nature.

[39]  E. Ramirez-Ruiz,et al.  Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b , 2005, astro-ph/0505480.

[40]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[41]  M. M. Kasliwal,et al.  The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts , 2005, Nature.

[42]  Derek B. Fox,et al.  The Local Rate and the Progenitor Lifetimes of Short-Hard Gamma-Ray Bursts: Synthesis and Predictions for LIGO , 2005 .

[43]  S. B. Cenko,et al.  The Afterglow, Energetics, and Host Galaxy of the Short-Hard Gamma-Ray Burst 051221a , 2006 .

[44]  Jerry T. Bonnell,et al.  Short Gamma-Ray Bursts with Extended Emission , 2006 .

[45]  Bing Zhang,et al.  Jet Breaks in Short Gamma-Ray Bursts. II. The Collimated Afterglow of GRB 051221A , 2006 .

[46]  Derek B. Fox,et al.  The Local Rate and the Progenitor Lifetimes of Short-Hard Gamma-Ray Bursts: Synthesis and Predictions for the Laser Interferometer Gravitational-Wave Observatory , 2006 .

[47]  Daniel E. Holz,et al.  Short GRB and binary black hole standard sirens as a probe of dark energy , 2006 .

[48]  E. Berger,et al.  The Prompt Gamma-Ray and Afterglow Energies of Short-Duration Gamma-Ray Bursts , 2007, astro-ph/0702694.

[49]  Cedric Deffayet,et al.  Probing Gravity with Spacetime Sirens , 2007, 0709.0003.

[50]  B. Metzger,et al.  Neutron-rich freeze-out in viscously spreading accretion discs formed from compact object mergers , 2008, 0810.2535.

[51]  Robert J. Taylor,et al.  Astrophysically triggered searches for gravitational waves: status and prospects , 2008 .

[52]  P. Hall,et al.  GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION , 2008, 0811.1044.

[53]  Vicky Kalogera,et al.  Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events , 2007, 0706.1283.

[54]  B. Metzger,et al.  Time-dependent models of accretion discs formed from compact object mergers , 2008, 0805.4415.

[55]  E. Berger THE HOST GALAXIES OF SHORT-DURATION GAMMA-RAY BURSTS: LUMINOSITIES, METALLICITIES, AND STAR FORMATION RATES , 2008, 0805.0306.

[56]  C. Stubbs,et al.  Linking optical and infrared observations with gravitational wave sources through transient variability , 2007, 0712.2598.

[57]  B. Metzger,et al.  Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down , 2007, 0712.1233.

[58]  Peter Shawhan,et al.  LOOC UP: locating and observing optical counterparts to gravitational wave bursts , 2008, 0803.0312.

[59]  N. University,et al.  Short Gamma-Ray Bursts and Binary Mergers in Spiral and Elliptical Galaxies: Redshift Distribution and Hosts , 2007, 0706.4139.

[60]  M. Shibata,et al.  Merger of black hole and neutron star in general relativity: Tidal disruption, torus mass, and gravitational waves , 2007, 0711.1410.

[61]  E. A. Den Hartog,et al.  IMPROVED LABORATORY TRANSITION PROBABILITIES FOR Ce ii, APPLICATION TO THE CERIUM ABUNDANCES OF THE SUN AND FIVE r-PROCESS-RICH, METAL-POOR STARS, AND RARE EARTH LAB DATA SUMMARY , 2009, 0903.1982.

[62]  N. Leroy,et al.  Gravitational wave burst search in the Virgo C7 data , 2008, 0812.4870.

[63]  Christian D. Ott,et al.  Equation of state effects in black hole–neutron star mergers , 2009, 0912.3528.

[64]  E. Berger,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF SHORT GAMMA-RAY BURST HOST GALAXIES: MORPHOLOGIES, OFFSETS, AND LOCAL ENVIRONMENTS , 2009, 0909.1804.

[65]  Richard O'Shaughnessy,et al.  Compact binary coalescences in the band of ground-based gravitational-wave detectors , 2009, 0912.1074.

[66]  B. Metzger,et al.  The effects of r-process heating on fallback accretion in compact object mergers , 2009, 0908.0530.

[67]  C. Ott,et al.  NEUTRINO SIGNATURES AND THE NEUTRINO-DRIVEN WIND IN BINARY NEUTRON STAR MERGERS , 2008, 0806.4380.

[68]  Triangulation of gravitational wave sources with a network of detectors , 2009 .

[69]  宇宙航空研究開発機構 Astrophysics with all-sky X-ray observations : 3rd International MAXI Workshop , 2009 .

[70]  J. K. Blackburn,et al.  SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1 , 2009, 0908.3824.

[71]  William H. Lee,et al.  PHASE TRANSITIONS AND He-SYNTHESIS-DRIVEN WINDS IN NEUTRINO COOLED ACCRETION DISKS: PROSPECTS FOR LATE FLARES IN SHORT GAMMA-RAY BURSTS , 2009, 0904.3752.

[72]  J.-L. Atteia,et al.  SVOM: a new mission for Gamma‐Ray Burst Studies , 2009, 0906.4195.

[73]  Caltech,et al.  THE GOLDEN STANDARD TYPE Ia SUPERNOVA 2005cf: OBSERVATIONS FROM THE ULTRAVIOLET TO THE NEAR-INFRARED WAVEBANDS , 2008, 0811.1205.

[74]  N. Gehrels,et al.  Multi-Messenger Astronomy with GRBs: A White Paper for the Astro2010 Decadal Survey , 2009, 0902.3022.

[75]  et al,et al.  Search for gravitational-wave bursts in the first year of the fifth LIGO science run , 2009, 0905.0020.

[76]  Linqing Wen,et al.  Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors , 2010, 1003.2504.

[77]  S. Barthelmy,et al.  A relativistic type Ibc supernova without a detected γ-ray burst , 2009, Nature.

[78]  E. Nakar,et al.  EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT , 2010, 1004.2496.

[79]  E. Berger,et al.  A SHORT GAMMA-RAY BURST “NO-HOST” PROBLEM? INVESTIGATING LARGE PROGENITOR OFFSETS FOR SHORT GRBs WITH OPTICAL AFTERGLOWS , 2010, 1007.0003.

[80]  K. Kuroda,et al.  The status of LCGT , 2006 .

[81]  A. Fruchter,et al.  THE OPTICAL AFTERGLOW AND z = 0.92 EARLY-TYPE HOST GALAXY OF THE SHORT GRB 100117A , 2010, 1012.4009.

[82]  L. Nuttall,et al.  Identifying the host galaxy of gravitational wave signals , 2010, 1009.1791.

[83]  I. Mandel,et al.  THE DISTRIBUTION OF COALESCING COMPACT BINARIES IN THE LOCAL UNIVERSE: PROSPECTS FOR GRAVITATIONAL-WAVE OBSERVATIONS , 2010, 1011.1256.

[84]  Samaya Nissanke,et al.  EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS , 2009, 0904.1017.

[85]  M. Shibata,et al.  Gravitational waves from spinning black hole-neutron star binaries , 2010, 1108.1189.

[86]  N. Gehrels,et al.  PRECURSORS OF SHORT GAMMA-RAY BURSTS , 2010, 1009.1385.

[87]  E. Berger,et al.  THE STELLAR AGES AND MASSES OF SHORT GAMMA-RAY BURST HOST GALAXIES: INVESTIGATING THE PROGENITOR DELAY TIME DISTRIBUTION AND THE ROLE OF MASS AND STAR FORMATION IN THE SHORT GAMMA-RAY BURST RATE , 2010, 1009.1147.

[88]  A. MacFadyen,et al.  OFF-AXIS GAMMA-RAY BURST AFTERGLOW MODELING BASED ON A TWO-DIMENSIONAL AXISYMMETRIC HYDRODYNAMICS SIMULATION , 2010, 1006.5125.

[89]  William H. Lee,et al.  SHORT GAMMA-RAY BURSTS FROM DYNAMICALLY ASSEMBLED COMPACT BINARIES IN GLOBULAR CLUSTERS: PATHWAYS, RATES, HYDRODYNAMICS, AND COSMOLOGICAL SETTING , 2009, 0909.2884.

[90]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[91]  L. Lehner,et al.  Mergers of magnetized neutron stars with spinning black holes: disruption, accretion, and fallback. , 2010, Physical review letters.

[92]  T. Hayler,et al.  SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN , 2010, 1001.0165.

[93]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[94]  S. McWilliams,et al.  ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE–NEUTRON-STAR BINARIES , 2011, 1101.1969.

[95]  Tsvi Piran,et al.  Detectable radio flares following gravitational waves from mergers of binary neutron stars , 2011, Nature.

[96]  S. Fairhurst,et al.  Targeted coherent search for gravitational waves from compact binary coalescences , 2010, 1012.4939.

[97]  Daniel E. Holz,et al.  LOCALIZING COMPACT BINARY INSPIRALS ON THE SKY USING GROUND-BASED GRAVITATIONAL WAVE INTERFEROMETERS , 2011, 1105.3184.

[98]  M. Lyutikov Schwarzschild black holes as unipolar inductors: expected electromagnetic power of a merger , 2011, 1101.0639.

[99]  Maxim Lyutikov,et al.  Electromagnetic power of merging and collapsing compact objects , 2011, 1104.1091.

[100]  William H. Lee,et al.  ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES , 2011, 1104.5504.

[101]  Alexei S. Pozanenko,et al.  Model of the extended emission of short gamma-ray bursts , 2011, 1103.4246.

[102]  B. Metzger,et al.  Short GRBs with Extended Emission from Magnetar Birth: Jet Formation and Collimation , 2011, 1106.4668.

[103]  Garching,et al.  r-PROCESS NUCLEOSYNTHESIS IN DYNAMICALLY EJECTED MATTER OF NEUTRON STAR MERGERS , 2011, 1107.0899.

[104]  A. MacFadyen,et al.  SYNTHETIC OFF-AXIS LIGHT CURVES FOR LOW-ENERGY GAMMA-RAY BURSTS , 2011, 1102.4571.

[105]  E. Berger,et al.  The Environments of Short-Duration Gamma-Ray Bursts and Implications for their Progenitors , 2010, 1005.1068.

[106]  B. Stephens,et al.  ECCENTRIC BLACK-HOLE–NEUTRON-STAR MERGERS , 2011, 1105.3175.

[107]  Miguel A. Aloy,et al.  THE MISSING LINK: MERGING NEUTRON STARS NATURALLY PRODUCE JET-LIKE STRUCTURES AND CAN POWER SHORT GAMMA-RAY BURSTS , 2011, 1101.4298.

[108]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[109]  Drew Keppel,et al.  Interpolating compact binary waveforms using the singular value decomposition , 2011, 1108.5618.

[110]  J. Read,et al.  Resonant shattering of neutron star crusts. , 2011, Physical review letters.

[111]  E. Berger,et al.  COMPARING Hα AND H i SURVEYS AS MEANS TO A COMPLETE LOCAL GALAXY CATALOG IN THE ADVANCED LIGO/VIRGO ERA , 2012, 1210.7238.