SHOCK-ENHANCED C+ EMISSION AND THE DETECTION OF H2O FROM THE STEPHAN'S QUINTET GROUP-WIDE SHOCK USING HERSCHEL

We present the first Herschel spectroscopic detections of the [O i] 63 μm and [C ii] 158 μm fine-structure transitions, and a single para-H2O line from the 35 × 15 kpc2 shocked intergalactic filament in Stephan's Quintet. The filament is believed to have been formed when a high-speed intruder to the group collided with a clumpy intergroup gas. Observations with the PACS spectrometer provide evidence for broad (>1000 km s−1) luminous [C ii] line profiles, as well as fainter [O i] 63 μm emission. SPIRE FTS observations reveal water emission from the p-H2O (111–000) transition at several positions in the filament, but no other molecular lines. The H2O line is narrow and may be associated with denser intermediate-velocity gas experiencing the strongest shock-heating. The [C ii]/PAHtot and [C ii]/FIR ratios are too large to be explained by normal photo-electric heating in photodissociation regions. H ii region excitation or X-ray/cosmic-ray heating can also be ruled out. The observations lead to the conclusion that a large fraction the molecular gas is diffuse and warm. We propose that the [C ii], [O i], and warm H2 line emission is powered by a turbulent cascade in which kinetic energy from the galaxy collision with the intergalactic medium is dissipated to small scales and low velocities, via shocks and turbulent eddies. Low-velocity magnetic shocks can help explain both the [C ii]/[O i] ratio, and the relatively high [C ii]/H2 ratios observed. The discovery that [C ii] emission can be enhanced, in large-scale turbulent regions in collisional environments, has implications for the interpretation of [C ii] emission in high-z galaxies.

[1]  E. Falgarone,et al.  Low-velocity shocks: signatures of turbulent dissipation in diffuse irradiated gas , 2013, 1301.7598.

[2]  L. Sargsyan,et al.  Dust obscuration of the narrow line region of active galactic nuclei , 2012 .

[3]  Edinburgh,et al.  A POPULATION OF z > 2 FAR-INFRARED HERSCHEL-Spire-SELECTED STARBURSTS , 2012, 1210.4932.

[4]  S. Veilleux,et al.  Spectroscopic FIR mapping of the disk and galactic wind of M 82 with Herschel-PACS , 2012, 1210.3496.

[5]  Edinburgh,et al.  An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field‐South: detection of [C ii] at z = 4.4 , 2012, 1209.1390.

[6]  USA,et al.  COSMIC-RAY AND X-RAY HEATING OF INTERSTELLAR CLOUDS AND PROTOPLANETARY DISKS , 2012 .

[7]  H. Rottgering,et al.  RAPID COEVAL BLACK HOLE AND HOST GALAXY GROWTH IN MRC 1138-262: THE HUNGRY SPIDER , 2012, 1206.5821.

[8]  C. Casey Far-infrared spectral energy distribution fitting for galaxies near and far , 2012, 1206.1595.

[9]  K. Dolag,et al.  Synthetic X-ray and radio maps for two different models of Stephan's Quintet , 2012, 1206.1234.

[10]  J. Goicoechea,et al.  THE CHEMISTRY OF INTERSTELLAR OH+, H2O+, AND H3O+: INFERRING THE COSMIC-RAY IONIZATION RATES FROM OBSERVATIONS OF MOLECULAR IONS , 2012, 1205.6446.

[11]  G. P. Forêts,et al.  Time-dependent modelling of the molecular line emission from shock waves in outflow sources , 2012 .

[12]  B. Groves,et al.  A STUDY OF HEATING AND COOLING OF THE ISM IN NGC 1097 WITH HERSCHEL-PACS AND SPITZER-IRS , 2012, 1204.0554.

[13]  G. Helou,et al.  DETECTION OF POWERFUL MID-IR H2 EMISSION IN THE BRIDGE BETWEEN THE TAFFY GALAXIES , 2012, 1203.4203.

[14]  G. Helou,et al.  ULTRALUMINOUS STAR-FORMING GALAXIES AND EXTREMELY LUMINOUS WARM MOLECULAR HYDROGEN EMISSION AT z = 2.16 IN THE PKS 1138−26 RADIO GALAXY PROTOCLUSTER , 2012, 1203.3019.

[15]  M. Cluver,et al.  TURBULENT MOLECULAR GAS AND STAR FORMATION IN THE SHOCKED INTERGALACTIC MEDIUM OF STEPHAN'S QUINTET , 2012, 1202.2862.

[16]  N. Bastian,et al.  GEMINI SPECTROSCOPIC SURVEY OF YOUNG STAR CLUSTERS IN MERGING/INTERACTING GALAXIES. IV. STEPHAN's QUINTET , 2012, 1201.5149.

[17]  Tenerife,et al.  New insights on Stephan’s Quintet: exploring the shock in three dimensions , 2012, 1201.4030.

[18]  B. Groves,et al.  RESOLVING THE FAR-IR LINE DEFICIT: PHOTOELECTRIC HEATING AND FAR-IR LINE COOLING IN NGC 1097 AND NGC 4559 , 2012, 1201.1016.

[19]  R. Davies,et al.  Herschel/PACS spectroscopy of NGC 4418 and Arp 220: H2O, H218O, OH, 18OH, O I, HCN, and NH3 , 2011, 1109.1118.

[20]  P. N. A. Ppleton,et al.  TURBULENT MOLECULAR GAS AND STAR FORMATION IN THE SHOCKED INTERGALACTIC MEDIUM OF STEPHAN ’ S QUINTET , 2012 .

[21]  B. Groves,et al.  KINGFISH—Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel: Survey Description and Image Atlas , 2011, 1111.4438.

[22]  F. Boulanger,et al.  Dense gas without star formation: the kpc-sized turbulent molecular disk in 3C 326 N , 2011, 1110.5913.

[23]  P. Appleton,et al.  Models of Stephan’s Quintet: hydrodynamic constraints on the group’s evolution , 2011, 1109.4161.

[24]  F. Israel,et al.  C + emission from the Magellanic Clouds. II. [C II] maps of star-forming regions LMC-N 11, SMC-N 66, and several others , 2011, 1104.2047.

[25]  H. Kaneda,et al.  FAR-INFRARED EMISSION FROM THE INTERGALACTIC MEDIUM IN STEPHAN’S QUINTET REVEALED BY AKARI , 2011, 1103.0607.

[26]  M. Dopita,et al.  DUST EMISSION AND STAR FORMATION IN STEPHAN'S QUINTET , 2010, 1010.1227.

[27]  Robert Antonucci,et al.  JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES , 2010, 1009.4533.

[28]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[29]  P. Appleton,et al.  N-BODY SIMULATION OF THE STEPHAN'S QUINTET , 2010, 1009.2740.

[30]  C. Kramer,et al.  Herschel / HIFI : first science highlights Special feature L etter to the E ditor HIFI spectroscopy of low-level water transitions in M 82 , 2010 .

[31]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[32]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[33]  M. Cluver,et al.  Observations and modeling of the dust emission from the H2-bright galaxy-wide shock in Stephan's Quintet , 2010, 1004.0677.

[34]  F. Boulanger,et al.  Energetics of the molecular gas in the H_2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback , 2010, 1003.3449.

[35]  M. Cluver,et al.  POWERFUL H2 LINE COOLING IN STEPHAN's QUINTET. I. MAPPING THE SIGNIFICANT COOLING PATHWAYS IN GROUP-WIDE SHOCKS , 2009, 0912.0282.

[36]  F. Boulanger,et al.  H2 formation and excitation in the Stephan's Quintet galaxy-wide collision , 2009, 0904.4239.

[37]  E. Falgarone,et al.  Models of turbulent dissipation regions in the diffuse interstellar medium , 2009, 0901.3712.

[38]  L. David,et al.  A CHANDRA X-RAY VIEW OF STEPHAN'S QUINTET: SHOCKS AND STAR FORMATION , 2008, 0812.0383.

[39]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[40]  H. Roussel,et al.  Spectral Mapping Reconstruction of Extended Sources , 2007, 0708.3745.

[41]  Az,et al.  Warm Molecular Hydrogen in the Spitzer SINGS Galaxy Sample , 2007, 0707.0395.

[42]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[43]  Jr.,et al.  The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission , 2006, astro-ph/0610913.

[44]  A. Stark,et al.  Detection of the 205 μm [N II] Line from the Carina Nebula , 2006, astro-ph/0610636.

[45]  M. Dopita,et al.  Powerful High-Velocity Dispersion Molecular Hydrogen Associated with an Intergalactic Shock Wave in Stephan’s Quintet , 2006, astro-ph/0602554.

[46]  D. Breitschwerdt,et al.  Stephan's Quintet with XMM-Newton , 2005, astro-ph/0506761.

[47]  A. Szalay,et al.  Ultraviolet Emission and Star Formation in Stephan’s Quintet , 2004, astro-ph/0411319.

[48]  É. Habart,et al.  PAHs in circumstellar disks around Herbig Ae/Be stars , 2004, astro-ph/0405195.

[49]  B. Draine Interstellar Dust , 2003, astro-ph/0312592.

[50]  Physical Conditions and Star Formation Activity in the Intragroup Medium of Stephan’s Quintet* ** *** , 2003, astro-ph/0306261.

[51]  J. L. Bourlot,et al.  The contributions of J‐type shocks to the H2 emission from molecular outflow sources , 2003 .

[52]  Molecular hydrogen formation in the interstellar medium , 2002, astro-ph/0207035.

[53]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2002, astro-ph/0205085.

[54]  M. Rosado,et al.  A Multiwavelength Study of Stephan’s Quintet , 2001, astro-ph/0111155.

[55]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.

[56]  D. Liedahl,et al.  Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions , 2001, astro-ph/0106478.

[57]  A. Abergel,et al.  H2 infrared line emission across the bright side of the ρ Ophiuchi main cloud , 2000 .

[58]  NASA Ames Research Center,et al.  Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions , 1999, astro-ph/9907255.

[59]  Gordon J. Stacey,et al.  [C II] 158 Micron Observations of IC 10: Evidence for Hidden Molecular Hydrogen in Irregular Galaxies , 1997 .

[60]  V. Pirronello,et al.  Laboratory Synthesis of Molecular Hydrogen on Surfaces of Astrophysical Interest , 1996, astro-ph/9611022.

[61]  A. Tielens,et al.  THE PHOTOELECTRIC HEATING MECHANISM FOR VERY SMALL GRAPHITIC GRAINS AND POLYCYCLIC AROMATIC HYDROCARBONS , 1994 .

[62]  A. Poglitsch,et al.  The 158 micron forbidden C II line - A measure of global star formation activity in galaxies , 1991 .

[63]  D. Hollenbach,et al.  Molecule Formation and Infrared Emission in Fast Interstellar Shocks. III. Results for J Shocks in Molecular Clouds , 1989 .

[64]  George Helou,et al.  Thermal infrared and nonthermal radio: remarkable correlation in disks of galaxies , 1985 .

[65]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[66]  B. Draine Magneto-Hydrodynamic Shock Waves in Molecular Clouds , 1983 .

[67]  J. Hulst,et al.  VLA observations of the radio continuum emission from Stephan's Quintet , 1981 .

[68]  D. Hollenbach,et al.  Molecule formation and infrared emission in fast interstellar shocks. I Physical processes , 1979 .

[69]  B. Draine Photoelectric heating of interstellar gas , 1978 .

[70]  M. Jura Interstellar clouds containing optically thin H2 , 1975 .

[71]  W. Langer,et al.  Model calculations for diffuse molecular clouds , 1974 .

[72]  R. Allen,et al.  Radio Continuum Emission at 21 cm near Stephan's Quintet , 1972, Nature.