Hierarchical Fusion in Clustered Sensor Networks with Asynchronous Local Estimates

This letter investigates the hierarchical fusion estimation for clustered sensor networks. The sensors within the same cluster are connected to a local estimator, and all the local estimators are linked with a fusion center. The fusion center and the local estimators are not required to be synchronous. During each estimation interval, the sensors are allowed to communicate with the local estimator several times. A minimum variance estimation algorithm is presented for each cluster to aperiodically generate local estimates. A covariance intersection fusion strategy is presented for the fusion center to generate fused estimates by using asynchronous local estimates and previous fused estimates, without knowing the cross-covariances among the local estimation errors.

[1]  Jun Fang,et al.  Power constrained distributed estimation with cluster-based sensor collaboration , 2009, IEEE Transactions on Wireless Communications.

[2]  Chongzhao Han,et al.  Optimal Linear Estimation Fusion — Part I : Unified Fusion Rules , 2001 .

[3]  Shu-Li Sun,et al.  Multi-sensor optimal information fusion Kalman filter , 2004, Autom..

[4]  Yuan Gao,et al.  Sequential covariance intersection fusion Kalman filter , 2012, Inf. Sci..

[5]  Luc Vandendorpe,et al.  Performance of Power-Constrained Estimation in Hierarchical Wireless Sensor Networks , 2013, IEEE Transactions on Signal Processing.

[6]  Zhansheng Duan,et al.  Lossless Linear Transformation of Sensor Data for Distributed Estimation Fusion , 2011, IEEE Transactions on Signal Processing.

[7]  Jie Xu,et al.  Optimal Distributed Kalman Filtering Fusion Algorithm Without Invertibility of Estimation Error and Sensor Noise Covariances , 2012, IEEE Signal Processing Letters.

[8]  Peng Zhang,et al.  Hierarchical fusion robust Kalman filter for clustering sensor network time‐varying systems with uncertain noise variances , 2015 .

[9]  Jeffrey K. Uhlmann,et al.  General Decentralized Data Fusion With Covariance Intersection (CI) , 2001 .

[10]  Chongzhao Han,et al.  Optimal linear estimation fusion .I. Unified fusion rules , 2003, IEEE Trans. Inf. Theory.

[11]  Jie Xu,et al.  Optimal Distributed Kalman Filtering Fusion With Singular Covariances of Filtering Errors and Measurement Noises , 2014, IEEE Transactions on Automatic Control.

[12]  Guoqing Qi,et al.  Distributed Asynchronous Fusion Algorithm for Sensor Networks with Packet Losses , 2014 .

[13]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[14]  Fuwen Yang,et al.  Decentralized robust Kalman filtering for uncertain stochastic systems over heterogeneous sensor networks , 2008, Signal Process..