Filling fraction of Yb in CoSb3 Skutterudite studied by electron microscopy

The filling fraction limit in filled Skutterudites plays a critical role in thermoelectric properties; however, the exact filling fraction limit for certain fillers is still in debate. In this work, we observed the lattice distortion, where lattice parameters a and b are unequal, in the annealed Yb-filled CoSb3. Microstructure characterization by advanced spherical aberration-corrected (CS-corrected) electron microscopy, energy-dispersive X-ray spectroscopy, and electron energy loss spectroscopy in conjunction with thermoelectric characterization clearly proves that the Yb filling fraction is higher in the annealed sample (with lattice distortion) than in the ball-milled sample (without lattice distortion). Therefore, the results indicate that lattice distortion appears when the Yb filling fraction reaches a certain critical value in CoSb3 Skutterudites. The observed lattice distortion provides an alternative approach to probe the filling fraction in filled Skutterudites.

[1]  Wei Cai,et al.  Grain Boundary Engineering for Achieving High Thermoelectric Performance in n‐Type Skutterudites , 2017 .

[2]  Gang Chen,et al.  Thermoelectric Properties of n-type ZrNiPb-Based Half-Heuslers , 2017 .

[3]  Jihui Yang,et al.  High-performance n-type YbxCo4Sb12: from partially filled skutterudites towards composite thermoelectrics , 2016 .

[4]  Z. Ren,et al.  Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system , 2016 .

[5]  G. J. Snyder,et al.  Temperature dependent solubility of Yb in Yb–CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics , 2015 .

[6]  G. Joshi,et al.  Thermoelectric property enhancement in Yb-doped n-type skutterudites YbxCo4Sb12 , 2014 .

[7]  Mark R. Johnson,et al.  Vibrational dynamics of the filled skutterudite Yb1-xFe4Sb12: Debye-Waller factor, generalized density of states, and elastic structure factor , 2014 .

[8]  Hui Wang,et al.  Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. , 2013, Physical chemistry chemical physics : PCCP.

[9]  Lidong Chen,et al.  Creation of Yb2O3 Nanoprecipitates Through an Oxidation Process in Bulk Yb-Filled Skutterudites , 2013, Journal of Electronic Materials.

[10]  Xiangyang Huang,et al.  High-Temperature Oxidation Behavior of Filled Skutterudites YbyCo4Sb12 , 2012, Journal of Electronic Materials.

[11]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[12]  Xiangyang Huang,et al.  High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy , 2010 .

[13]  Mark R. Johnson,et al.  Vibrational dynamics of filled skutterudites M1-xFe4Sb12 (M = Ca, Sr, Ba, and Yb) , 2010 .

[14]  X. Jia,et al.  High Pressure Synthesis and Thermoelectric Properties of the Ba-filled Skutterudites: High Pressure Synthesis and Thermoelectric Properties of the Ba-filled Skutterudites , 2009 .

[15]  Jihui Yang,et al.  Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties , 2009 .

[16]  Z. Fisk,et al.  Coexisting on-center and off-center Yb3+ sites in Ce1-x Ybx Fe4 P12 skutterudites , 2009 .

[17]  Jihui Yang,et al.  Improving thermoelectric performance of caged compounds through light-element filling , 2009 .

[18]  Qingjie Zhang,et al.  Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method , 2009 .

[19]  C. Uher,et al.  Transport and mechanical properties of Yb-filled skutterudites , 2009 .

[20]  Han Li,et al.  Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance , 2008 .

[21]  C. Uher,et al.  Thermodynamic analysis of the filling fraction limits for impurities in CoSb3 based on ab initio calculations , 2008 .

[22]  H. Geng,et al.  Solidification contraction-free synthesis for the Yb0.15Co4Sb12 bulk material , 2007 .

[23]  W. Zhang,et al.  Filling fraction limits for rare-earth atoms in CoSb3 : An ab initio approach , 2006 .

[24]  T. Goto,et al.  Synthesis of YbyCo4Sb12∕Yb2O3 composites and their thermoelectric properties , 2006 .

[25]  Jihui Yang,et al.  Filling fraction limit for intrinsic voids in crystals: doping in skutterudites. , 2005, Physical review letters.

[26]  M. Baenitz,et al.  Weak itinerant ferromagnetism and electronic and crystal structures of alkali-metal iron antimonides: NaFe4Sb12 and KFe4Sb12 , 2004 .

[27]  M. Baenitz,et al.  Magnetic resonance investigations on NaFe4Sb12 , 2004 .

[28]  C. Uher,et al.  Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni , 2002 .

[29]  C. Uher,et al.  Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12 , 2001 .

[30]  George S. Nolas,et al.  High figure of merit in partially filled ytterbium skutterudite materials , 2000 .

[31]  B. Sales,et al.  FILLED SKUTTERUDITE ANTIMONIDES : ELECTRON CRYSTALS AND PHONON GLASSES , 1997 .

[32]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[33]  G. A. Slack,et al.  The effect of rare‐earth filling on the lattice thermal conductivity of skutterudites , 1996 .