The search for a low-dimensional characterization of a local climate system

Along with the computation of attractor dimension via the Grassberger-Procaccia method and the nearest neighbour algorithm, a variety of phase space tests are used to search for low-dimensional characterization of daily maximum and minimum atmospheric temperature data (ca. 25 000 points each, spanning about a 70-year period). These tests include global and local singular value decompositions, as well as others for uncovering nonlinear correlations among amplitudes of the global singular vectors and for recognizing determinism in a time series. The results show that a low-dimensional characterization of the temperature data is unlikely.

[1]  J. Yorke,et al.  HOW MANY DELAY COORDINATES DO YOU NEED , 1993 .

[2]  R. Vautard,et al.  Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series , 1989 .

[3]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[4]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[5]  D. Ruelle,et al.  Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems , 1992 .

[6]  P. Grassberger Do climatic attractors exist? , 1986, Nature.

[7]  P. Grassberger,et al.  On noise reduction methods for chaotic data. , 1993, Chaos.

[8]  E. Lorenz Dimension of weather and climate attractors , 1991, Nature.

[9]  F. Takens Detecting strange attractors in turbulence , 1981 .

[10]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[11]  L. Sirovich Empirical Eigenfunctions and Low Dimensional Systems , 1991 .

[12]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[13]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[14]  G. P. King,et al.  Topological dimension and local coordinates from time series data , 1987 .

[15]  James Theiler,et al.  Estimating fractal dimension , 1990 .

[16]  D. Ruelle Large volume limit of the distribution of characteristic exponents in turbulence , 1982 .

[17]  Konstantine P. Georgakakos,et al.  Evidence of Deterministic Chaos in the Pulse of Storm Rainfall. , 1990 .

[18]  G. Nicolis,et al.  Is there a climatic attractor? , 1984, Nature.

[19]  Schreiber,et al.  Noise reduction in chaotic time-series data: A survey of common methods. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  A. Politi,et al.  Statistical description of chaotic attractors: The dimension function , 1985 .

[21]  J. Healey Identifying finite dimensional behaviour from broadband spectra , 1994 .

[22]  Itamar Procaccia,et al.  Complex or just complicated? , 1988, Nature.

[23]  J. Elsner,et al.  Comments on “Dimension Analysis of Climatic Data" , 1990 .

[24]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[25]  James A. Yorke,et al.  Noise Reduction: Finding the Simplest Dynamical System Consistent with the Data , 1989 .

[26]  X. Zeng,et al.  Estimating the fractal dimension and the predictability of the atmosphere , 1992 .

[27]  Kirk A. Maasch,et al.  Calculating climate attractor dimension from δ18O records by the Grassberger-Procaccia algorithm , 1989 .

[28]  Leonard A. Smith Intrinsic limits on dimension calculations , 1988 .

[29]  Passamante,et al.  Recognizing determinism in a time series. , 1993, Physical review letters.

[30]  D. Broomhead,et al.  Local adaptive Galerkin bases for large-dimensional dynamical systems , 1991 .

[31]  J. Mallet-Paret Negatively invariant sets of compact maps and an extension of a theorem of Cartwright , 1976 .