Inf-convolution of risk measures and optimal risk transfer

Abstract.We develop a methodology for optimal design of financial instruments aimed to hedge some forms of risk that is not traded on financial markets. The idea is to minimize the risk of the issuer under the constraint imposed by a buyer who enters the transaction if and only if her risk level remains below a given threshold. Both agents have also the opportunity to invest all their residual wealth on financial markets, but with different access to financial investments. The problem is reduced to a unique inf-convolution problem involving a transformation of the initial risk measures.

[1]  Mark H. A. Davis Pricing weather derivatives by marginal value , 2001 .

[2]  Freddy Delbaen,et al.  On Esscher Transforms in Discrete Finance Models , 1998, ASTIN Bulletin.

[3]  P. Imkeller,et al.  Utility maximization in incomplete markets , 2005, math/0508448.

[4]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[5]  Doktor der Naturwissenschaften,et al.  Rational Hedging and Valuation with Utility-Based Preferences , 2001 .

[6]  N. Karoui,et al.  Optimal derivatives design under dynamic risk measures , 2004 .

[7]  A. Raviv The Design of an Optimal Insurance Policy , 1979 .

[8]  Peter Grandits,et al.  On the minimal entropy martingale measure , 2002 .

[9]  Michael Mania,et al.  A semimartingale BSDE related to the minimal entropy martingale measure , 2003, Finance Stochastics.

[10]  Pierre-Louis Lions,et al.  On mathematical finance , 2000 .

[11]  Marek Musiela,et al.  An example of indifference prices under exponential preferences , 2004, Finance Stochastics.

[12]  W. Schachermayer Optimal investment in incomplete financial markets , 2002 .

[13]  Walter Schachermayer,et al.  ARBITRAGE AND FREE LUNCH WITH BOUNDED RISK FOR UNBOUNDED CONTINUOUS PROCESSES , 1994 .

[14]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[15]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[16]  Pauline Barrieu,et al.  Optimal design of derivatives in illiquid markets , 2002 .

[17]  F. Delbaen,et al.  Exponential Hedging and Entropic Penalties , 2002 .

[18]  J. Komlos A generalization of a problem of Steinhaus , 1967 .

[19]  F. Delbaen Coherent risk measures , 2000 .

[20]  Hans Bühlmann,et al.  Mathematical Methods in Risk Theory , 1970 .

[21]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[22]  Pauline Barrieu Structuration optimale de produits financiers en marché illiquide et trois excursions dans d'autres domaines des probabilités , 2002 .

[23]  Louis Eeckhoudt,et al.  Risk: Evaluation, Management and Sharing , 1996 .

[24]  Nicole El Karoui,et al.  Structuration optimale de produits financiers et diversification en présence de sources de risque non-négociables , 2003 .

[25]  Y. Kabanov,et al.  On the optimal portfolio for the exponential utility maximization: remarks to the six‐author paper , 2002 .

[26]  Marco Frittelli,et al.  Introduction to a theory of value coherent with the no-arbitrage principle , 2000, Finance Stochastics.

[27]  Marco Frittelli,et al.  On the Existence of Minimax Martingale Measures , 2002 .

[28]  Nicole El Karoui,et al.  Pricing Via Utility Maximization and Entropy , 2000 .

[29]  K. Borch Equilibrium in a Reinsurance Market , 1962 .

[30]  Dirk Becherer,et al.  Rational hedging and valuation of integrated risks under constant absolute risk aversion , 2003 .

[31]  Jun Sekine An Approximation for Exponential Hedging , 2004 .