Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics

The dispersion and absorption of a considerable number of liquid and dielectrics are represented by the empirical formula e*−e∞=(e0−e∞)/[1+(iωτ0)1−α]. In this equation, e* is the complex dielectric constant, e0 and e∞ are the ``static'' and ``infinite frequency'' dielectric constants, ω=2π times the frequency, and τ0 is a generalized relaxation time. The parameter α can assume values between 0 and 1, the former value giving the result of Debye for polar dielectrics. The expression (1) requires that the locus of the dielectric constant in the complex plane be a circular arc with end points on the axis of reals and center below this axis.If a distribution of relaxation times is assumed to account for Eq. (1), it is possible to calculate the necessary distribution function by the method of Fuoss and Kirkwood. It is, however, difficult to understand the physical significance of this formal result.If a dielectric satisfying Eq. (1) is represented by a three‐element electrical circuit, the mechanism responsible...

[1]  E. Schweidler Studien über die Anomalien im Verhalten der Dielektrika , 1907 .

[2]  Karl Willy Wagner,et al.  Zur Theorie der unvollkommenen Dielektrika , 1913 .

[3]  The Variation with Frequency of the Power Loss in Dielectrics , 1923 .

[4]  K. Cole ELECTRIC IMPEDANCE OF SUSPENSIONS OF SPHERES , 1928, The Journal of general physiology.

[5]  C. P. Smyth,et al.  DIPOLE ROTATION IN CRYSTALLINE SOLIDS , 1932 .

[6]  S. O. Morgan,et al.  The dielectric constant and power factor of rosin oil and ethyl abietate , 1932 .

[7]  Kenneth S. Cole,et al.  ELECTRIC PHASE ANGLE OF CELL MEMBRANES , 1932, The Journal of general physiology.

[8]  S. O. Morgan,et al.  The dielectric properties of chlorinated diphenyls , 1933 .

[9]  A. H. Scott,et al.  Effect of temperature and frequency on the dielectric constant, power factor, and conductivity of compounds of purified rubber and sulphur , 1933 .

[10]  E. Murphy The Temperature Dependence of the Relaxation Time of Polarizations in Ice , 1934 .

[11]  F. Perrin,et al.  Mouvement brownien d'un ellipsoide - I. Dispersion diélectrique pour des molécules ellipsoidales , 1934 .

[12]  Pierre Girard Dipole association in pure liquids , 1934 .

[13]  S. O. Morgan Two Types of Dielectric Polarization , 1934 .

[14]  H. Rieche Über die dielektrischen Verluste flüssiger Isolierstoffe , 1935 .

[15]  R. Kronig,et al.  On the theory of absorption and dispersion in paramagnetic and dielectric media , 1936 .

[16]  A. Gemant,et al.  A Method of Analyzing Experimental Results Obtained from Elasto‐Viscous Bodies , 1936 .

[17]  W. A. Yager The Distribution of Relaxation Times in Typical Dielectrics , 1936 .

[18]  J. V. Vleck On the Role of Dipole‐Dipole Coupling in Dielectric Media , 1937 .

[19]  H. Casimir,et al.  Note on the thermodynamic interpretation of paramagnetic relaxation phenomena , 1938 .

[20]  R. Cole Dielectric Absorption in Polar Media and the Local Field , 1938 .

[21]  W. A. Yager Dielectric Constant and Dielectric Loss of Plastics as Related to Their Composition , 1938 .

[22]  S. O. Morgan Dielectric Losses in Polar Liquids and Solids , 1938 .

[23]  C. Zener INTERNAL FRICTION IN SOLIDS II. GENERAL THEORY OF THERMOELASTIC INTERNAL FRICTION , 1938 .

[24]  K. Slevogt Dispersion und Absorption elektrischer Wellen in Alkoholen und wäßrigen Lösungen , 1939 .

[25]  Karl Schmale Absorption im Gebiete kurzer elektrischer Wellen, gemessen an Dipolflüssigkeiten und Elektrolyten , 1939 .

[26]  B. S. Biggs,et al.  Dielectric Evidence of Molecular Rotation in the Crystals of Certain Benzene Derivatives , 1940 .

[27]  A. H. White,et al.  Dielectric Evidence of Molecular Rotation in the Crystals of Certain Non-aromatic Compounds* , 1940 .

[28]  E. Rushton,et al.  The dielectric properties of some thermoplastics , 1940 .

[29]  Raymond M. Fuoss,et al.  Electrical Properties of Solids. VIII. Dipole Moments in Polyvinyl Chloride-Diphenyl Systems* , 1941 .