Recrystallization and chemical changes in apatite in response to hypervelocity impact

Despite the wide utility of apatite, Ca5(PO4)3(F,Cl,OH), in the geosciences, including tracing volatile abundances on the Moon and Mars, little is known about how the mineral responds to the extreme temperatures and pressures associated with hypervelocity impacts. To address this deficiency, we here present the first microstructural analysis and chemical mapping of shocked apatite from a terrestrial impact crater. Apatite grains from the Paasselkä impact structure, Finland, display intragrain crystal-plastic deformation as well as pervasive recrystallization—the first such report in terrestrial apatite. A partially recrystallized grain offers the opportunity to investigate the effect of shock recrystallization on the chemical composition of apatite. The recrystallized portion of the fluorapatite grain is depleted in Mg and Fe relative to the remnant non-recrystallized domain. Strikingly, the recrystallized region alone hosts inclusions of (Mg,Fe)2(PO4)F, wagnerite or a polymorph thereof. These are interpreted to be a product of phase separation during recrystallization and to be related to the reduced abundances of certain elements in the recrystallized domain. The shock-induced recrystallization of apatite, which we show to be related to changes in the mineral’s chemical composition, is not always readily visible in traditional imaging techniques (such as backscattered electron imaging of polished interior surfaces), thus highlighting the need for correlated microstructural, chemical, and isotopic studies of phosphates. This is particularly relevant for extraterrestrial phosphates that may have been exposed to impacts, and we urge the consideration of microstructural data in the interpretation of the primary or secondary nature of elemental abundances and isotopic compositions.

[1]  J. Darling,et al.  Shock‐induced microtextures in lunar apatite and merrillite , 2019, Meteoritics & Planetary Science.

[2]  J. Snape,et al.  A new U-Pb age for shock-recrystallised zircon from the Lappajärvi impact crater, Finland, and implications for the accurate dating of impact events , 2019, Geochimica et Cosmochimica Acta.

[3]  J. Spray,et al.  In situ LA-ICP-MS apatite and zircon U–Pb geochronology of the Nicholson Lake impact structure, Canada: Shock and related thermal effects , 2018, Earth and Planetary Science Letters.

[4]  P. Rochette,et al.  FRIGN zircon—The only terrestrial mineral diagnostic of high-pressure and high-temperature shock deformation , 2018, Geology.

[5]  M. Whitehouse,et al.  The formation of large neoblasts in shocked zircon and their utility in dating impacts , 2017 .

[6]  W. Bleeker,et al.  An Early Ordovician 40Ar-39Ar age for the ∼50 km Carswell impact structure, Canada , 2017 .

[7]  J. Snape,et al.  Impact history of the Apollo 17 landing site revealed by U‐Pb SIMS ages , 2017 .

[8]  S. Reddy,et al.  Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages , 2017, Contributions to Mineralogy and Petrology.

[9]  A. Wittmann,et al.  A pressure-temperature phase diagram for zircon at extreme conditions , 2017 .

[10]  J. Snape,et al.  Halogen and Cl isotopic systematics in Martian phosphates: Implications for the Cl cycle and surface halogen reservoirs on Mars , 2017 .

[11]  S. Reddy,et al.  Empirical constraints on shock features in monazite using shocked zircon inclusions , 2016 .

[12]  J. Snape,et al.  Phosphate ages in Apollo 14 breccias: Resolving multiple impact events with high precision U–Pb SIMS analyses , 2016 .

[13]  S. Reddy,et al.  A terrestrial perspective on using ex situ shocked zircons to date lunar impacts , 2015 .

[14]  R. Ketcham Technical Note: Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites , 2015 .

[15]  J. Webster,et al.  Magmatic Apatite: A Powerful, Yet Deceptive, Mineral , 2015 .

[16]  F. McCubbin,et al.  Extraterrestrial apatite: Planetary geochemistry to astrobiology , 2015 .

[17]  D. Chew,et al.  Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface , 2015 .

[18]  D. Harlov Apatite: A Fingerprint for Metasomatic Processes , 2015 .

[19]  S. Reddy,et al.  Deformed monazite yields high-temperature tectonic ages , 2015 .

[20]  M. Trieloff,et al.  A Carnian 40Ar/39Ar age for the Paasselkä impact structure (SE Finland)—An update , 2015 .

[21]  J. P. Greenwood,et al.  The Lunar Apatite Paradox , 2014, Science.

[22]  A. Cavosie,et al.  SHOCKED APATITE FROM THE SANTA FE IMPACT STRUCTURE (USA): A NEW ACCESSORY MINERAL FOR STUDIES OF SHOCK METAMORPHISM , 2014 .

[23]  D. King,et al.  An (U‐Th)/He age for the shallow‐marine Wetumpka impact structure, Alabama, USA , 2012 .

[24]  D. Harlov,et al.  Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens , 2012 .

[25]  B. Jolliff,et al.  Fluorine and chlorine abundances in lunar apatite: Implications for heterogeneous distributions of magmatic volatiles in the lunar interior , 2011 .

[26]  K. Hodges,et al.  (U‐Th)/He dating of terrestrial impact structures: The Manicouagan example , 2011 .

[27]  W. Seifert,et al.  Origin of coexisting wüstite, Mg–Fe and REE phosphate minerals in graphite-bearing fluorapatite from the Rumburk granite , 2010 .

[28]  M. Trieloff,et al.  A Middle‐Late Triassic 40Ar/39Ar age for the Paasselkä impact structure (SE Finland) , 2010 .

[29]  John M. Hughes,et al.  Site preference of U and Th in Cl, F, and Sr apatites , 2009 .

[30]  M. Schmieder,et al.  Impact melt rocks from the Paasselkä impact structure (SE Finland): Petrography and geochemistry , 2008 .

[31]  Hervé Diot,et al.  Wagnerite in a cordierite-gedrite gneiss: Witness of long-term fluid-rock interaction in the continental crust (Ile d’Yeu, Armorican Massif, France) , 2008 .

[32]  B. Phillips,et al.  Synthesis and characterization of low-OH– fluor-chlorapatite: A single-crystal XRD and NMR spectroscopic study , 2008 .

[33]  YuxxnNc Nr,et al.  Crystal chemistry of the monazite and xenotime structures , 2007 .

[34]  J. Hagerty,et al.  Beryllium and Other Trace Elements in Paragneisses and Anatectic Veins of the Ultrahigh-Temperature Napier Complex, Enderby Land, East Antarctica: the Role of Sapphirine , 2006 .

[35]  A. Wittmann,et al.  Shock‐metamorphosed zircon in terrestrial impact craters , 2006 .

[36]  John M. Hughes,et al.  Mn-rich fluorapatite from Austria: Crystal structure, chemical analysis, and spectroscopic investigations , 2004 .

[37]  E. Grew,et al.  WAGNERITE-Ma5bc, A NEW POLYTYPE OF Mg2(PO4)(F,OH), FROM GRANULITE-FACIES PARAGNEISS, LARSEMANN HILLS, PRYDZ BAY, EAST ANTARCTICA , 2003 .

[38]  K. Rickers,et al.  Wagnerite in high-MgAl granulites of Anakapalle, Eastern Ghats Belt, India , 2000 .

[39]  H. Leroux,et al.  Experimental shock deformation in zircon: a transmission electron microscopic study , 1999 .

[40]  M. Fleet,et al.  Site preference of rare earth elements in fluorapatite , 1995 .

[41]  John M. Hughes,et al.  Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites , 1991 .

[42]  John M. Hughes,et al.  Crystal structures of natural ternary apatites; solid solution in the Ca 5 (PO 4 ) 3 X(X = F, OH, Cl) system , 1990 .

[43]  C. Barnosky,et al.  Fission-Track Dating of Haughton Astrobleme and Included Biota, Devon Island, Canada , 1987, Science.

[44]  Y. Syono,et al.  Shock behavior of zircon: phase transition to scheelite structure and decomposition , 1985 .

[45]  D. M. Sheridan,et al.  Mineralogy and geology of the wagnerite occurrence on Santa Fe Mountain, Front Range, Colorado , 1976 .

[46]  C. B. Sclar,et al.  Electron microscopy of some experimentally shocked counterparts of lunar minerals. , 1972 .