Preparation and thickening mechanism of copolymer fluorinated thickeners in supercritical CO2

[1]  L. Nasri,et al.  CO2 utilization for determining solubility of teriflunomide (immunomodulatory agent) in supercritical carbon dioxide: Experimental investigation and thermodynamic modeling , 2022, Journal of CO2 Utilization.

[2]  H. Hoteit,et al.  Carbon dioxide thickening: A review of technological aspects, advances and challenges for oilfield application , 2022, Fuel.

[3]  P. Ranjith,et al.  Combined micro-proppant and supercritical carbon dioxide (SC-CO2) fracturing in shale gas reservoirs: A review , 2021 .

[4]  Kangyin Dong,et al.  How does financial risk affect global CO2 emissions? The role of technological innovation , 2021, Technological Forecasting and Social Change.

[5]  J. J. Lee,et al.  Thickening CO2 with Direct Thickeners, CO2-in-Oil Emulsions, or Nanoparticle Dispersions: Literature Review and Experimental Validation , 2021 .

[6]  Chandrasekhar Garlapati,et al.  The solubility of Sulfabenzamide (an antibacterial drug) in supercritical carbon dioxide: Evaluation of a new thermodynamic model , 2021 .

[7]  Li Nianyin,et al.  Recent advances in waterless fracturing technology for the petroleum industry: An overview , 2021 .

[8]  Ming Zhou,et al.  Research progress on supercritical CO2 thickeners. , 2021, Soft matter.

[9]  G. Sodeifian,et al.  Determination of Galantamine solubility (an anti-alzheimer drug) in supercritical carbon dioxide (CO2): Experimental correlation and thermodynamic modeling , 2021 .

[10]  Yanling Wang,et al.  Preparation and Performance of Supercritical Carbon Dioxide Thickener , 2020, Polymers.

[11]  Baojiang Sun,et al.  Experimental and microscopic investigations of the performance of copolymer thickeners in supercritical CO2 , 2020 .

[12]  E. J. Anthony,et al.  Recent advances in carbon dioxide utilization , 2020, Renewable and Sustainable Energy Reviews.

[13]  Xuefen Liu,et al.  Development technology status of low permeability sandstone oil reservoirs , 2020, IOP Conference Series: Earth and Environmental Science.

[14]  K. Sepehrnoori,et al.  Key problems and solutions in supercritical CO2 fracturing technology , 2019, Frontiers in Energy.

[15]  Elizabeth L. Zeitler,et al.  Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization , 2019, ACS Catalysis.

[16]  G. Sodeifian,et al.  Experimental measurement of solubilities of sertraline hydrochloride in supercriticalcarbon dioxide with/without menthol: Data correlation , 2019, The Journal of Supercritical Fluids.

[17]  G. Sodeifian,et al.  Solubility measurement of a chemotherapeutic agent (Imatinib mesylate) in supercritical carbon dioxide: Assessment of new empirical model , 2019, The Journal of Supercritical Fluids.

[18]  E. Beckman,et al.  Fluoroacrylate-aromatic acrylate copolymers for viscosity enhancement of carbon dioxide , 2019, The Journal of Supercritical Fluids.

[19]  Hao Bai,et al.  Effect of a Modified Silicone as a Thickener on Rheology of Liquid CO2 and Its Fracturing Capacity , 2019, Polymers.

[20]  A. Kantzas,et al.  Numerical modelling of cyclic CO2 injection in unconventional tight oil resources; trivial effects of heterogeneity and hysteresis in Bakken formation , 2019, Fuel.

[21]  A. Hawkes,et al.  An assessment of CCS costs, barriers and potential , 2018, Energy Strategy Reviews.

[22]  Hao Bai,et al.  Experimental Study on Rheological Properties of Thinkened Co2 in Liquid and Supercritical State , 2018, Petroleum Science and Technology.

[23]  Jinzhou Zhao,et al.  Advances in waterless fracturing technologies for unconventional reservoirs , 2018, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.

[24]  Mingyong Du,et al.  Laboratory experiment on a toluene-polydimethyl silicone thickened supercritical carbon dioxide fracturing fluid , 2018, Journal of Petroleum Science and Engineering.

[25]  M. Myers,et al.  Experimental Evaluations of Polymeric Solubility and Thickeners for Supercritical CO2 at High Temperatures for Enhanced Oil Recovery , 2018 .

[26]  Jui-Yuan Lee,et al.  A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems , 2018 .

[27]  Mingwei Gao,et al.  Impairment mechanism of thickened supercritical carbon dioxide fracturing fluid in tight sandstone gas reservoirs , 2018 .

[28]  Zhiwu Liang,et al.  Rheological properties study of foam fracturing fluid using CO2 and surfactant , 2017 .

[29]  Zhiyuan Wang,et al.  Study on filtration patterns of supercritical CO2 fracturing in unconventional natural gas reservoirs , 2017 .

[30]  Tao Liu,et al.  Effect of molecular weight on CO2-philicity of poly(vinyl acetate) with different molecular chain structure , 2016 .

[31]  S. Ono,et al.  Effect of surfactant headgroup on low-fluorine-content CO2-philic hybrid surfactants , 2016 .

[32]  Yiyu Lu,et al.  Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale , 2016 .

[33]  X. Liu,et al.  RAFT/MADIX (co)polymerization of vinyl trifluoroacetate: a means to many ends , 2014 .

[34]  P. Rocha,et al.  An improved method for calculating CO2 minimum miscibility pressure based on solubility parameter , 2012 .

[35]  S. Camy,et al.  Enhancement of poly(vinyl ester) solubility in supercritical CO2 by partial fluorination: the key role of polymer-polymer interactions. , 2012, Journal of the American Chemical Society.

[36]  J. Fages,et al.  Development of an improved falling ball viscometer for high-pressure measurements with supercritical CO2 , 2010 .

[37]  Julian Eastoe,et al.  Rod-like micelles thicken CO(2). , 2010, Langmuir : the ACS journal of surfaces and colloids.

[38]  Aaron P Wlaschin,et al.  Thickening Carbon Dioxide With the Fluoroacrylate-Styrene Copolymer , 2003 .

[39]  E. Beckman,et al.  Enhancement of the Viscosity of Carbon Dioxide Using Styrene/Fluoroacrylate Copolymers , 2000 .