Electronic structure in the twinned 10M martensite phase of the Ni49.7Mn29.1Ga21.2 Heusler alloy: Experiment and theory

[1]  Yongbin Lee,et al.  Generalized susceptibility of the magnetic shape-memory alloy Ni 2 MnGa , 2002 .

[2]  W. Kuch,et al.  Microspectroscopic two-dimensional Fermi surface mapping using a photoelectron emission microscope , 2003 .

[3]  Ilja Turek,et al.  Electronic Structure of Disordered Alloys, Surfaces and Interfaces , 1996 .

[4]  K. Ishida,et al.  Magnetic-field-induced shape recovery by reverse phase transformation , 2006, Nature.

[5]  Claudia Felser,et al.  Simple rules for the understanding of Heusler compounds , 2011 .

[6]  Peter Müllner,et al.  Size Effects on Magnetic Actuation in Ni‐Mn‐Ga Shape‐Memory Alloys , 2011, Advanced materials.

[7]  R. James,et al.  Zig-zag twins and helical phase transformations , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Mehmet Acet,et al.  Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. , 2010, Nature materials.

[9]  Claudia Felser,et al.  Tunable multifunctional topological insulators in ternary Heusler compounds. , 2010, Nature materials.

[10]  X. Moya,et al.  Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys , 2005 .

[11]  L. Mañosa,et al.  Elastocaloric effect associated with the martensitic transition in shape-memory alloys. , 2008, Physical review letters.

[12]  L. Fekete,et al.  Surface analysis of the Heusler Ni49.7Mn29.1Ga21.2 Alloy: The composition, phase transition, and twinned microstructure of martensite , 2016 .

[13]  M. Wuttig,et al.  Adaptive modulations of martensites. , 2009, Physical review letters.

[14]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[15]  A. A. Likhachev,et al.  Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase , 2002 .

[16]  L. Schultz,et al.  Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown on MgO(001) , 2008 .

[17]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[18]  L. Schultz,et al.  The Role of Adaptive Martensite in Magnetic Shape Memory Alloys , 2012 .

[19]  Richard D. James,et al.  Enhanced reversibility and unusual microstructure of a phase-transforming material , 2013, Nature.

[20]  H. Seiner,et al.  Different microstructures of mobile twin boundaries in 10M modulated Ni–Mn–Ga martensite , 2013 .

[21]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[22]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[23]  F. Himpsel Experimental determination of bulk energy band dispersions. , 1980, Applied optics.

[24]  P. J. Webster,et al.  Magnetic order and phase transformation in Ni2MnGa , 1984 .

[25]  J. Honolka,et al.  Band mapping of the weakly off-stoichiometric Heusler alloy Ni 49.7 Mn 29.1 Ga 21.2 in the austenitic phase , 2015 .

[26]  V. V. Kokorin,et al.  Large magnetic‐field‐induced strains in Ni2MnGa single crystals , 1996 .

[27]  C. Felser,et al.  Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.

[28]  K. Ziebeck,et al.  Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni2MnGa , 1999 .

[29]  A. D. Corso,et al.  First-principles study of lattice instabilities in ferromagnetic Ni2MnGa , 2003, cond-mat/0304349.

[30]  M. A. Alam,et al.  Positron annihilation study of the Fermi surface of Ni2MnGa , 2012 .

[31]  H. Hänninen,et al.  Activation of magnetic shape memory effect in Ni–Mn–Ga alloys by mechanical and magnetic treatment , 2008 .

[32]  H. Hänninen,et al.  Mechanically induced demagnetization and remanent magnetization rotation in Ni–Mn–Ga (–B) magnetic shape memory alloy , 2014 .