A family of norms with applications in quantum information theory II
暂无分享,去创建一个
[1] Leonid Gurvits. Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.
[2] Gilles Pisier,et al. Introduction to Operator Space Theory , 2003 .
[3] Toshiyuki Takasaki,et al. On the geometry of positive maps in matrix algebras , 1983 .
[4] Michal Horodecki,et al. A Few Steps More Towards NPT Bound Entanglement , 2007, IEEE Transactions on Information Theory.
[5] László Lovász,et al. Semidefinite Programs and Combinatorial Optimization , 2003 .
[6] Ashish V. Thapliyal,et al. Evidence for bound entangled states with negative partial transpose , 1999, quant-ph/9910026.
[7] Fabio Benatti,et al. Non-Decomposable Quantum Dynamical Semigroups and Bound Entangled States , 2004, Open Syst. Inf. Dyn..
[8] V. Vedral,et al. Entanglement measures and purification procedures , 1997, quant-ph/9707035.
[9] Guillaume Aubrun,et al. Non-additivity of Renyi entropy and Dvoretzky's Theorem , 2009, 0910.1189.
[10] D. Bures. An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .
[11] E. D. Klerk,et al. Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .
[12] Andrzej Kossakowski,et al. Spectral conditions for entanglement witnesses versus bound entanglement , 2009 .
[13] D. Bruss,et al. Separability and distillability in composite quantum systems-a primer , 2000 .
[14] V. Paulsen. Completely Bounded Maps and Operator Algebras: Contents , 2003 .
[15] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[16] Timur Oikhberg,et al. Operator spaces with few completely bounded maps , 2004 .
[17] P. Horodecki. Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.
[18] M. Horodecki,et al. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.
[19] E.C.G. Sudarshan,et al. Schmidt states and positivity of linear maps , 2005 .
[20] Rahul Jain,et al. QIP = PSPACE , 2011, JACM.
[21] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[22] H. Sommers,et al. Random Bures mixed states and the distribution of their purity , 2009, 0909.5094.
[23] A. Montanaro,et al. On the dimension of subspaces with bounded Schmidt rank , 2007, 0706.0705.
[24] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[25] V. Paulsen. Completely Bounded Maps and Operator Algebras: Contents , 2003 .
[26] John Watrous,et al. Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..
[27] M. Horodecki,et al. Reduction criterion of separability and limits for a class of distillation protocols , 1999 .
[28] Z. Da. A new proof of Федоров theorem , 2003 .
[29] J. Cirac,et al. Distillability and partial transposition in bipartite systems , 1999, quant-ph/9910022.
[30] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[31] Guillaume Aubrun,et al. Tensor products of convex sets and the volume of separable states on N qudits (10 pages) , 2005, quant-ph/0503221.
[32] M. Horodecki,et al. Reduction criterion of separability and limits for a class of protocols of entanglement distillation , 1997, quant-ph/9708015.
[33] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[34] Jaroslaw Adam Miszczak,et al. Restricted numerical range: A versatile tool in the theory of quantum information , 2009, 0905.3646.
[35] Erling Størmer,et al. Extension of positive maps into B (H) , 1986 .
[36] Bill Fefferman,et al. The Power of Unentanglement , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.
[37] M. Plenio,et al. Quantifying Entanglement , 1997, quant-ph/9702027.
[38] P. Horodecki,et al. Schmidt number for density matrices , 1999, quant-ph/9911117.
[39] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[40] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[41] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[42] Piotr Gawron,et al. Local numerical range: a versatile tool in the theory of quantum information , 2009 .
[43] Dariusz Chruściński,et al. Spectral Conditions for Positive Maps , 2008, 0809.4909.
[44] Karol Zyczkowski,et al. Cones of positive maps and their duality relations , 2009, 0902.4877.
[45] Farid Alizadeh,et al. Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..
[46] E. Størmer,et al. Duality of cones of positive maps , 2008, 0810.4253.
[47] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[48] R. Saigal,et al. Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .
[49] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[50] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .