A family of norms with applications in quantum information theory II

We consider the problem of computing the family of operator norms recently introducedin [1]. We develop a family of semidefinite programs that can be used to exactly computethem in small dimensions and bound them in general. Some theoretical consequencesfollow from the duality theory of semidefinite programming, including a new constructiveproof that for all r there are non-positive partial transpose Werner states that are r-undistillable. Several examples are considered via a MATLAB implementation of thesemidefinite program, including the case of Werner states and randomly generated statesvia the Bures measure, and approximate distributions of the norms are provided. Weextend these norms to arbitrary convex mapping cones and explore their implicationswith positive partial transpose states.

[1]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[2]  Gilles Pisier,et al.  Introduction to Operator Space Theory , 2003 .

[3]  Toshiyuki Takasaki,et al.  On the geometry of positive maps in matrix algebras , 1983 .

[4]  Michal Horodecki,et al.  A Few Steps More Towards NPT Bound Entanglement , 2007, IEEE Transactions on Information Theory.

[5]  László Lovász,et al.  Semidefinite Programs and Combinatorial Optimization , 2003 .

[6]  Ashish V. Thapliyal,et al.  Evidence for bound entangled states with negative partial transpose , 1999, quant-ph/9910026.

[7]  Fabio Benatti,et al.  Non-Decomposable Quantum Dynamical Semigroups and Bound Entangled States , 2004, Open Syst. Inf. Dyn..

[8]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[9]  Guillaume Aubrun,et al.  Non-additivity of Renyi entropy and Dvoretzky's Theorem , 2009, 0910.1189.

[10]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[11]  E. D. Klerk,et al.  Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .

[12]  Andrzej Kossakowski,et al.  Spectral conditions for entanglement witnesses versus bound entanglement , 2009 .

[13]  D. Bruss,et al.  Separability and distillability in composite quantum systems-a primer , 2000 .

[14]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[15]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[16]  Timur Oikhberg,et al.  Operator spaces with few completely bounded maps , 2004 .

[17]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[18]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[19]  E.C.G. Sudarshan,et al.  Schmidt states and positivity of linear maps , 2005 .

[20]  Rahul Jain,et al.  QIP = PSPACE , 2011, JACM.

[21]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[22]  H. Sommers,et al.  Random Bures mixed states and the distribution of their purity , 2009, 0909.5094.

[23]  A. Montanaro,et al.  On the dimension of subspaces with bounded Schmidt rank , 2007, 0706.0705.

[24]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[25]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[26]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[27]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[28]  Z. Da A new proof of Федоров theorem , 2003 .

[29]  J. Cirac,et al.  Distillability and partial transposition in bipartite systems , 1999, quant-ph/9910022.

[30]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[31]  Guillaume Aubrun,et al.  Tensor products of convex sets and the volume of separable states on N qudits (10 pages) , 2005, quant-ph/0503221.

[32]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of protocols of entanglement distillation , 1997, quant-ph/9708015.

[33]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[34]  Jaroslaw Adam Miszczak,et al.  Restricted numerical range: A versatile tool in the theory of quantum information , 2009, 0905.3646.

[35]  Erling Størmer,et al.  Extension of positive maps into B (H) , 1986 .

[36]  Bill Fefferman,et al.  The Power of Unentanglement , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[37]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[38]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[39]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[40]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[41]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[42]  Piotr Gawron,et al.  Local numerical range: a versatile tool in the theory of quantum information , 2009 .

[43]  Dariusz Chruściński,et al.  Spectral Conditions for Positive Maps , 2008, 0809.4909.

[44]  Karol Zyczkowski,et al.  Cones of positive maps and their duality relations , 2009, 0902.4877.

[45]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[46]  E. Størmer,et al.  Duality of cones of positive maps , 2008, 0810.4253.

[47]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[48]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[49]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[50]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .