Three-dimensional alpha shapes

Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the “shape” of the set. For that purpose, this article introduces the formal notion of the family of α-shapes of a finite point set in R<supscrpt>3</supscrpt>. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter α ε R controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size <italic>n</italic> in time <italic>0(n<supscrpt>2</supscrpt>)</italic>, worst case. A robust implementation of the algorithm is discussed, and several applications in the area of scientific computing are mentioned.

[2]  D. Kirkpatrick,et al.  A Framework for Computational Morphology , 1985 .

[3]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[4]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[5]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.

[6]  John Fairfield,et al.  Segmenting Dot Patterns by Voronoi Diagram Concavity , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[8]  T. Creighton,et al.  Protein Folding , 1992 .

[9]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[10]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[11]  G. C. Shephard,et al.  Convex Polytopes and the Upper Bound Conjecture , 1971 .

[12]  Virginia Trimble,et al.  Mapping the Universe , 1982, Nature.

[13]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[14]  Jirí Matousek,et al.  Linear optimization queries , 1992, SCG '92.

[15]  David P. Dobkin,et al.  Primitives for the manipulation of three-dimensional subdivisions , 1987, SCG '87.

[16]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[17]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[18]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[19]  Jean-Daniel Boissonnat,et al.  Geometric structures for three-dimensional shape representation , 1984, TOGS.

[20]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[21]  Herbert Edelsbrunner,et al.  Weighted alpha shapes , 1992 .

[22]  J. Huchra,et al.  Mapping the Universe , 1989, Science.

[23]  D. Matula,et al.  Properties of Gabriel Graphs Relevant to Geographic Variation Research and the Clustering of Points in the Plane , 2010 .

[24]  Jeremiah P. Ostriker,et al.  The universe in a box : thermal effects in the standard cold dark matter scenario , 1990 .

[25]  J. Szulmajster Protein folding , 1988, Bioscience reports.

[26]  Remco C. Veltkamp,et al.  Closed Object Boundaries from Scattered Points , 1994, Lecture Notes in Computer Science.

[27]  Carl W. Lee,et al.  Regular Triangulations of Convex Polvtopes , 1990, Applied Geometry And Discrete Mathematics.

[28]  P. Giblin Graphs, surfaces, and homology , 1977 .

[29]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[30]  P. McMullen,et al.  AN INTRODUCTION TO CONVEX POLYTOPES (Graduate Texts in Mathematics, 90) , 1984 .

[31]  Raimund Seidel,et al.  Exact Upper Bounds for the Number of Faces in d-Dimensional Voronoi Diagrams , 1990, Applied Geometry And Discrete Mathematics.

[32]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[33]  W. W. Moss Some New Analytic and Graphic Approaches to Numerical Taxonomy, with an Example from the Dermanyssidae (ACARI) , 1967 .

[34]  Godfried T. Toussaint,et al.  The relative neighbourhood graph of a finite planar set , 1980, Pattern Recognit..

[35]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[36]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[37]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[38]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..