Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis

This review summarizes the recent progress of Grubbs–Hoveyda (GH) type olefin metathesis catalysts incorporated into the robust fold of β-barrel proteins. Anchoring strategies are discussed and challenges and opportunities in this emerging field are shown from simple small-molecule transformations over ring-opening metathesis polymerizations to in vivo olefin metathesis.

[1]  M. Davari,et al.  Cavity Size Engineering of a β-Barrel Protein Generates Efficient Biohybrid Catalysts for Olefin Metathesis , 2018 .

[2]  D. Woolfson,et al.  Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes , 2018 .

[3]  Tillmann Heinisch,et al.  Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. , 2018, Chemical reviews.

[4]  Frances H Arnold,et al.  Directed Evolution: Bringing New Chemistry to Life , 2017, Angewandte Chemie.

[5]  Thomas R Ward,et al.  Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism. , 2018, Trends in biotechnology.

[6]  Takashi Hayashi,et al.  A Pyrene-Linked Cavity within a β-Barrel Protein Promotes an Asymmetric Diels-Alder Reaction. , 2017, Angewandte Chemie.

[7]  P. Bourne,et al.  The Structure of Small Beta Barrels , 2017, bioRxiv.

[8]  P. Ascenzi,et al.  Nitrophorins and nitrobindins: structure and function , 2017, Biomolecular concepts.

[9]  S. Buchanan,et al.  The β-barrel assembly machinery in motion , 2017, Nature Reviews Microbiology.

[10]  J. Okuda,et al.  Metatheases: artificial metalloproteins for olefin metathesis. , 2016, Organic & biomolecular chemistry.

[11]  Tillmann Heinisch,et al.  Directed evolution of artificial metalloenzymes for in vivo metathesis , 2016, Nature.

[12]  Takashi Hayashi,et al.  Construction of a hybrid biocatalyst containing a covalently-linked terpyridine metal complex within a cavity of aponitrobindin. , 2016, Journal of inorganic biochemistry.

[13]  A. Verma,et al.  Secretory expression, characterization and docking study of glucose-tolerant β-glucosidase from B. subtilis. , 2016, International journal of biological macromolecules.

[14]  H. Mallin,et al.  Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology , 2016, Nature Protocols.

[15]  P. Faller,et al.  Coordination complexes and biomolecules: A wise wedding for catalysis upgrade , 2016 .

[16]  Subrata K. Das,et al.  Cloning, Overexpression, and Characterization of Halostable, Solvent-Tolerant Novel β-Endoglucanase from a Marine Bacterium Photobacterium panuliri LBS5T (DSM 27646T) , 2016, Applied Biochemistry and Biotechnology.

[17]  Tsuyoshi Inoue,et al.  A Highly Active Biohybrid Catalyst for Olefin Metathesis in Water: Impact of a Hydrophobic Cavity in a β-Barrel Protein , 2015 .

[18]  J. Pokorski,et al.  Protein ROMP: Aqueous Graft-from Ring-Opening Metathesis Polymerization. , 2015, ACS macro letters.

[19]  L. Humphreys,et al.  Biocatalysis in Organic Synthesis , 2015 .

[20]  U. Schwaneberg,et al.  Hybrid ruthenium ROMP catalysts based on an engineered variant of β-barrel protein FhuA ΔCVF(tev) : effect of spacer length. , 2015, Chemistry, an Asian journal.

[21]  Takashi Hayashi,et al.  Photoinduced Hydrogen Evolution Catalyzed by a Synthetic Diiron Dithiolate Complex Embedded within a Protein Matrix , 2014 .

[22]  P. Srivastava,et al.  Manganese terpyridine artificial metalloenzymes for benzylic oxygenation and olefin epoxidation. , 2014, Tetrahedron.

[23]  G. Ehlers,et al.  Rigidity, secondary structure, and the universality of the boson peak in proteins. , 2014, Biophysical journal.

[24]  M. Dürrenberger,et al.  Neutralizing the detrimental effect of glutathione on precious metal catalysts. , 2014, Journal of the American Chemical Society.

[25]  B. Lipshutz,et al.  Olefin Metathesis in Water and Aqueous Media , 2014 .

[26]  U. Schwaneberg,et al.  Rhodium‐Complex‐Linked Hybrid Biocatalyst: Stereo‐Controlled Phenylacetylene Polymerization within an Engineered Protein Cavity , 2014 .

[27]  Gerard Roelfes,et al.  Artificial metalloenzymes for enantioselective catalysis. , 2014, Current opinion in chemical biology.

[28]  Jared C. Lewis Artificial Metalloenzymes and Metallopeptide Catalysts for Organic Synthesis , 2013 .

[29]  Freddi Philippart,et al.  A hybrid ring-opening metathesis polymerization catalyst based on an engineered variant of the β-barrel protein FhuA. , 2013, Chemistry.

[30]  Hugh O'Neill,et al.  Secondary structure and rigidity in model proteins. , 2013, Soft matter.

[31]  S. Hirota,et al.  Effect of Added Salt on Ring-Closing Metathesis Catalyzed by a Water-Soluble Hoveyda–Grubbs Type Complex To Form N-Containing Heterocycles in Aqueous Media , 2013 .

[32]  K. Grela,et al.  Highly active catalysts for olefin metathesis in water , 2012 .

[33]  U. Schwaneberg,et al.  A rhodium complex-linked β-barrel protein as a hybrid biocatalyst for phenylacetylene polymerization. , 2012, Chemical communications.

[34]  U. Schwaneberg,et al.  First Insights on Organic Cosolvent Effects on FhuA Wildtype and FhuA Δ1-159 , 2012, International journal of molecular sciences.

[35]  Thomas R Ward,et al.  Artificial metalloenzymes for olefin metathesis based on the biotin-(strept)avidin technology. , 2011, Chemical communications.

[36]  Nicholas Noinaj,et al.  The structural biology of β-barrel membrane proteins: a summary of recent reports. , 2011, Current opinion in structural biology.

[37]  Thomas R Ward,et al.  Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond. , 2011, Accounts of chemical research.

[38]  B. G. Davis,et al.  Olefin cross-metathesis on proteins: investigation of allylic chalcogen effects and guiding principles in metathesis partner selection. , 2010, Journal of the American Chemical Society.

[39]  John S. Olson,et al.  The structure and NO binding properties of the nitrophorin‐like heme‐binding protein from Arabidopsis thaliana gene locus At1g79260.1 , 2010, Proteins.

[40]  K. Grela,et al.  Ruthenium catalysts bearing chelating carboxylate ligands: application to metathesis reactions in water , 2010 .

[41]  S. Hsu,et al.  The folding, stability and conformational dynamics of beta-barrel fluorescent proteins. , 2009, Chemical Society reviews.

[42]  B. G. Davis,et al.  Enabling olefin metathesis on proteins: chemical methods for installation of S-allyl cysteine. , 2009, Chemical communications.

[43]  B. G. Davis,et al.  Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. , 2008, Journal of the American Chemical Society.

[44]  T. Ward,et al.  Artificial metalloenzymes as selective catalysts in aqueous media , 2008 .

[45]  Jason P. Jordan,et al.  Small-molecule N-heterocyclic-carbene-containing olefin-metathesis catalysts for use in water. , 2007, Angewandte Chemie.

[46]  R. Grubbs,et al.  Highly active water-soluble olefin metathesis catalyst. , 2006, Journal of the American Chemical Society.

[47]  R. Grubbs Handbook of metathesis , 2003 .

[48]  William C. Wimley,et al.  The versatile β-barrel membrane protein , 2003 .

[49]  R. Benz,et al.  Diffusion through channel derivatives of the Escherichia coli FhuA transport protein. , 2002, European journal of biochemistry.

[50]  M. Wilmanns,et al.  Stability, catalytic versatility and evolution of the (βα ) 8 -barrel fold , 2001 .

[51]  Gary M. Smith The Nature of Enzymes , 2001 .

[52]  R. Wierenga,et al.  The TIM‐barrel fold: a versatile framework for efficient enzymes , 2001, FEBS letters.

[53]  A. Hoveyda,et al.  Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts , 2000 .

[54]  M. Desmadril,et al.  Purification and structural and functional characterization of FhuA, a transporter of the Escherichia coli outer membrane. , 1996, Biochemistry.

[55]  A. Lesk,et al.  Principles determining the structure of beta-sheet barrels in proteins. II. The observed structures. , 1994, Journal of molecular biology.

[56]  A. Lesk,et al.  Principles determining the structure of beta-sheet barrels in proteins. I. A theoretical analysis. , 1994, Journal of molecular biology.

[57]  T. Attwood,et al.  Structure and sequence relationships in the lipocalins and related proteins , 1993, Protein science : a publication of the Protein Society.

[58]  R. Grubbs,et al.  Aqueous ring-opening metathesis polymerization of carboximide-functionalized 7-oxanorbornenes , 1992 .

[59]  S. Nguyen,et al.  Ring-opening metathesis polymerization (ROMP) of norbornene by a Group VIII carbene complex in protic media , 1992 .

[60]  D. B. Harrison,et al.  Poly(2,5-(3,4-bis(methoxymethyl)furanylene)vinylene)s prepared by aqueous ring opening metathesis polymerisation , 1991 .

[61]  R. Schrock Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes , 1990 .

[62]  George M. Whitesides,et al.  Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety , 1978 .

[63]  Masahiro Aoyama,et al.  Olefin Metathesis , 2020, Name Reactions.

[64]  N. Green Avidin. , 1975, Advances in protein chemistry.

[65]  Par Jean‐Louis Hérisson,et al.  Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques , 1971 .