Rational Design of Electronically Labile Dinuclear Fe and Co complexes with 1,10‐Phenanthroline‐5,6‐Diimine: A DFT study

A series of coordination compounds of redox‐active 1,10‐phenanthroline‐5,6‐diimine with CoII bis‐diketonates and FeII dihydrobis(pyrazolyl)borates has been computationally designed by means of density functional theory (DFT UB3LYP*/6‐311++G(d,p)) calculations of their electronic structure, energy characteristics, and magnetic properties. Four types of complexes differing by the nature and position of the terminal metal‐centered fragments have been considered. The performed systematic calculations have revealed the systems capable of undergoing thermally initiated spin‐state switching rearrangements, including those governed by the synchronized mechanisms of spin crossover and valence tautomerism. The predicted magnetic characteristics allow one to consider the dinuclear cobalt complexes and heterometallic Co/Fe compounds with 1,10‐phenanthroline‐5,6‐diimine as building blocks for molecular and quantum electronics devices. © 2019 Wiley Periodicals, Inc.

[1]  L. Sorace,et al.  DFT Prediction and Experimental Investigation of Valence Tautomerism in Cobalt-Dioxolene Complexes. , 2019, Inorganic chemistry.

[2]  A. Starikova,et al.  Adducts of transition metal complexes with redox-active ligands: the structure and spin-state-switching rearrangements , 2018, Russian Chemical Reviews.

[3]  A. Piskunov,et al.  Pentacoordinated cloro-bis-o-iminosemiquinonato Mn and Fe complexes , 2018, Journal of Molecular Structure.

[4]  Xiaolong Li,et al.  First-principles prediction of two-dimensional metal bis(dithiolene) complexes as promising gas sensors. , 2018, Physical chemistry chemical physics : PCCP.

[5]  G. Chastanet,et al.  Switchable Heteroleptic Mononuclear Iron(II) Complexes as Versatile Molecular Building Block , 2018 .

[6]  A. Starikova,et al.  Redox Isomerism in Main-Group Chemistry: Tin Complex with o-Iminoquinone Ligands , 2018 .

[7]  A. Starikova,et al.  A DFT computational study of the magnetic behaviour of cobalt dioxolene complexes of tetraazamacrocyclic ligands , 2018 .

[8]  A. Starikova,et al.  Computational insight into magnetic behavior and properties of the transition metal complexes with redox-active ligands: a DFT approach , 2018 .

[9]  J. Bachmann,et al.  Synthesis, Characterization, and Properties of Iron(II) Spin-Crossover Molecular Photoswitches Functioning at Room Temperature. , 2017, Inorganic chemistry.

[10]  S. Klokishner,et al.  Electric field control of the valence tautomeric transformation in cobalt complexes , 2017 .

[11]  M. Ruben,et al.  Emerging trends in spin crossover (SCO) based functional materials and devices , 2017 .

[12]  L. Sorace,et al.  One Dimensional Chain and Ribbon Cobalt–Dioxolene Coordination Polymers: A New Valence Tautomeric Compound , 2017 .

[13]  R. Righini,et al.  Spin Dynamics and Low Energy Vibrations: Insights from Vanadyl-Based Potential Molecular Qubits. , 2017, Journal of the American Chemical Society.

[14]  C. Ruiz-Pérez,et al.  Reversible solvatomagnetic switching in a single-ion magnet from an entatic state† †Electronic supplementary information (ESI) available: Preparation methods and physical characterization data. Crystallographic refinement and computational details. Additional figures (Fig. S1–S12) and tables (Tables , 2017, Chemical science.

[15]  Christoph van Wüllen,et al.  Spectroscopic, Structural, and Kinetic Investigation of the Ultrafast Spin Crossover in an Unusual Cobalt(II) Semiquinonate Radical Complex. , 2017, Chemistry.

[16]  M. Affronte,et al.  Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits. , 2016, Dalton transactions.

[17]  Song Gao,et al.  Understanding the Magnetic Anisotropy toward Single-Ion Magnets. , 2016, Accounts of chemical research.

[18]  M. M. Khusniyarov,et al.  How to Switch Spin-Crossover Metal Complexes at Constant Room Temperature. , 2016, Chemistry.

[19]  M. Chiesa,et al.  Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety. , 2016, Journal of the American Chemical Society.

[20]  A. Starikova,et al.  Quantum chemical modeling of magnetically bistable metal coordination compounds. Synchronization of spin crossover, valence tautomerism and charge transfer induced spin transition mechanisms. , 2016, Dalton transactions.

[21]  O. Sato Dynamic molecular crystals with switchable physical properties. , 2016, Nature chemistry.

[22]  A. Starikova,et al.  Quantum-chemical study of spin crossover in cobalt complexes with an o-benzoquinone ligand , 2016, Doklady Chemistry.

[23]  P. Harding,et al.  Spin crossover in iron(III) complexes , 2016 .

[24]  L. Sorace,et al.  Valence Tautomerism in One-Dimensional Coordination Polymers. , 2016, Inorganic chemistry.

[25]  K. P. Kepp Theoretical Study of Spin Crossover in 30 Iron Complexes. , 2016, Inorganic chemistry.

[26]  A. Caneschi,et al.  Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits , 2015, Chemical science.

[27]  V. Minkin,et al.  Intramolecular spin state switching mechanisms of transition metal complexes , 2015, Russian Chemical Bulletin.

[28]  R. Gable,et al.  Electronic Lability in a Dinuclear Cobalt–Bis(dioxolene) Complex , 2015 .

[29]  C. Streb,et al.  Novel phenanthroline-diaryldiazadiene ligands with heteroditopic coordination spheres. , 2015, Dalton transactions.

[30]  A. Pavlov,et al.  A Trigonal Prismatic Mononuclear Cobalt(II) Complex Showing Single-Molecule Magnet Behavior. , 2015, Journal of the American Chemical Society.

[31]  Hao-Huai Li,et al.  In-situ oxidation, addition and cyclization reaction of 5,6-diamino-1,10-phenanthroline to construct copper(I)-diimine–diphosphine complexes , 2015 .

[32]  F. Heinemann,et al.  Bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism , 2015, Chemical science.

[33]  P. Boyle,et al.  Synthesis, Characterization, and Photophysical Studies of an Iron(III) Catecholate-Nitronylnitroxide Spin-Crossover Complex. , 2015, Inorganic chemistry.

[34]  J. Nitschke,et al.  Stimuli-Responsive Metal-Ligand Assemblies. , 2015, Chemical reviews.

[35]  J. Long,et al.  Radical ligand-containing single-molecule magnets , 2015 .

[36]  A. Starikova,et al.  Molecular Design of the Valence Tautomeric Mixed-Ligand Adducts of CoII Diketonates with Redox-Active Ligands , 2015 .

[37]  F. Heinemann,et al.  Modulation of magnetic properties at room temperature: coordination-induced valence tautomerism in a cobalt dioxolene complex. , 2014, Chemistry.

[38]  C. Boskovic,et al.  Valence tautomerism in metal complexes: Stimulated and reversible intramolecular electron transfer between metal centers and organic ligands , 2014 .

[39]  Shinji Kanegawa,et al.  A switchable complex ligand exhibiting photoinduced valence tautomerism , 2013 .

[40]  Frank Neese,et al.  Magnetic blocking in a linear iron(I) complex. , 2013, Nature chemistry.

[41]  T. Weyhermüller,et al.  9,10-phenanthrenesemiquinone radical complexes of ruthenium(III), osmium(III) and rhodium(III) and redox series. , 2013, Dalton transactions.

[42]  V. Rodriguez,et al.  From Magnetic to Nonlinear Optical Switches in Spin‐Crossover Complexes , 2013 .

[43]  M. Halcrow Spin-crossover materials : properties and applications , 2013 .

[44]  F. Busqué,et al.  Catechol‐Based Biomimetic Functional Materials , 2013, Advanced materials.

[45]  F. Paesani,et al.  Theoretical prediction of spin-crossover temperatures in ligand-driven light-induced spin change systems. , 2012, Inorganic chemistry.

[46]  F. Sönnichsen,et al.  FeIII Spin‐Crossover Complexes with Photoisomerizable Ligands: Experimental and Theoretical Studies on the Ligand‐Driven Light‐Induced Spin Change Effect , 2012 .

[47]  Yann Garcia,et al.  Pressure and Temperature Spin Crossover Sensors with Optical Detection , 2012, Sensors.

[48]  B. Abrahams,et al.  A two-step valence tautomeric transition in a dinuclear cobalt complex. , 2012, Inorganic chemistry.

[49]  Fernando Luis,et al.  Design of magnetic coordination complexes for quantum computing. , 2012, Chemical Society reviews.

[50]  Shinji Kanegawa,et al.  ESR study of light-induced valence tautomerism of a dinuclear Co complex , 2011 .

[51]  V. Minkin,et al.  Synthesis, molecular and electronic structures of six-coordinate transition metal (Mn, Fe, Co, Ni, Cu, and Zn) complexes with redox-active 9-hydroxyphenoxazin-1-one ligands. , 2011, Inorganic chemistry.

[52]  F. Tuna,et al.  Linking heterometallic rings for quantum information processing and amusement. , 2011, Chemical Society reviews.

[53]  M. Affronte,et al.  Molecular spins for quantum information technologies. , 2011, Chemical Society reviews.

[54]  B. C. Garrett,et al.  Magnetic Bistability of Molecules in Homogeneous Solution at Room Temperature , 2011, Science.

[55]  T. Glaser Rational design of single-molecule magnets: a supramolecular approach. , 2011, Chemical communications.

[56]  K. Yoshizawa,et al.  Theoretical study of the mechanism of valence tautomerism in cobalt complexes. , 2010, The journal of physical chemistry. A.

[57]  J. Canary,et al.  Transition metal-based chiroptical switches for nanoscale electronics and sensors , 2010 .

[58]  V. V. Koval,et al.  A quantum chemical study of bis-(iminoquinonephenolate) Zn(II) complexes. , 2010, The journal of physical chemistry. A.

[59]  T. Bally Isomerism: the same but different. , 2010, Nature chemistry.

[60]  F. Meyer,et al.  Temperature-induced spin-transition in a low-spin cobalt(II) semiquinonate complex. , 2010, Angewandte Chemie.

[61]  A. Beni,et al.  Tuning the charge distribution and photoswitchable properties of cobalt-dioxolene complexes by using molecular techniques. , 2008, Chemistry.

[62]  M. Halcrow The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands , 2007 .

[63]  Joel S. Miller,et al.  Synthesis, structure, and magnetic properties of valence ambiguous dinuclear antiferromagnetically coupled cobalt and ferromagnetically coupled iron complexes containing the chloranilate(2-) and the significantly stronger coupling chloranilate(*3-) radical trianion. , 2007, Journal of the American Chemical Society.

[64]  Joel S. Miller,et al.  Room-temperature spin crossover observed for [(TPyA)FeII(DBQ(2-))Fe(II)(TPyA)](2+) [TPyA = Tris(2-pyridylmethyl)amine; DBQ(2-) = 2,5-Di-tert-butyl-3,6-dihydroxy-1,4-benzoquinonate]. , 2007, Inorganic chemistry.

[65]  M. Licchelli,et al.  Light-emitting molecular devices based on transition metals , 2006 .

[66]  D. Ruiz-Molina,et al.  Valence Tautomerism: New Challenges for Electroactive Ligands , 2005 .

[67]  W. Kaim,et al.  Sensitive oxidation state ambivalence in unsymmetrical three-center (M/Q/M) systems [(acac)2 Ru(mu-Q)Ru(acac)2](n), Q = 1,10-phenanthroline-5,6-dione or 1,10-phenanthroline-5,6-diimine (n = +, 0, -, 2-). , 2005, Inorganic chemistry.

[68]  P. Gütlich,et al.  Electronic, vibrational, and structural properties of a spin-crossover catecholato-iron system in the solid state: theoretical study of the electronic nature of the doublet and sextet states. , 2005, Chemistry.

[69]  C. Sangregorio,et al.  Quinonoid metal complexes: toward molecular switches. , 2004, Accounts of chemical research.

[70]  Song Gao,et al.  New route to the mixed valence semiquinone-catecholate based mononuclear FeIII and catecholate based dinuclear MnIII complexes: first experimental evidence of valence tautomerism in an iron complex. , 2004, Inorganic chemistry.

[71]  P. Gütlich,et al.  Spin Crossover in Transition Metal Compounds II , 2004 .

[72]  A. Caneschi,et al.  Tuning the physical properties of a metal complex by molecular techniques: the design and the synthesis of the simplest cobalt-o-dioxolene complex undergoing valence tautomerism , 2003 .

[73]  M. Reiher,et al.  Reparameterization of hybrid functionals based on energy differences of states of different multiplicity , 2001 .

[74]  O. Kahn,et al.  Spin-Transition Polymers: From Molecular Materials Toward Memory Devices , 1998 .

[75]  Hidemi Nagao,et al.  Effective exchange integrals for open-shell species by density functional methods , 1994 .

[76]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[77]  Olivier Kahn,et al.  Spin Transition Molecular Materials for displays and data recording , 1992 .

[78]  A. Hauser,et al.  Intersystem crossing in Fe(II) coordination compounds , 1991 .

[79]  Louis Noodleman,et al.  Valence bond description of antiferromagnetic coupling in transition metal dimers , 1981 .

[80]  C. Pierpont,et al.  Tautomeric catecholate-semiquinone interconversion via metal-ligand electron transfer. Structural, spectral, and magnetic properties of (3,5-di-tert-butylcatecholato)(3,5-di-tert-butylsemiquinone)(bipyridyl)cobalt(III), a complex containing mixed-valence organic ligands , 1980 .

[81]  Christin Wirth,et al.  Spin Crossover In Transition Metal Compounds , 2016 .

[82]  F. Yu,et al.  A spin-crossover catecholato–iron(III) system: Synthesis, crystal structure and magnetic properties , 2015 .

[83]  M. Ward,et al.  Structural, electrochemical and UV/VIS/NIR spectroelectrochemical properties of diastereomerically pure dinuclear ruthenium complexes based on the bridging ligand phenanthroline-5,6-diimine, and a mononuclear by-product with a peripheral isoimidazole group , 1999 .

[84]  C. Jørgensen Differences between the four halide ligands, and discussion remarks on trigonal-bipyramidal complexes, on oxidation states, and on diagonal elements of one-electron energy , 1966 .